File size: 14,482 Bytes
32b77c4
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param sde_net_arch: Network architecture for extracting features\n        when using gSDE. If None, the latent features from the policy will be used.\n        Pass an empty list to use the states as features.\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa95161cef0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa95161cf80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa951623050>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa9516230e0>", "_build": "<function ActorCriticPolicy._build at 0x7fa951623170>", "forward": "<function ActorCriticPolicy.forward at 0x7fa951623200>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa951623290>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa951623320>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa9516233b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa951623440>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa9516234d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fa9515f44b0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1655280458.9991467, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAGvuaPVzTPro30II7Ikg4tNaXarpk3ZO6AACAPwAAgD89wFi+gR7YvADYgDr+0vs4YxFBPoYzqLkAAIA/AACAPzNtEbxSuP25PsfBuD1KQbQT2sM7LQjhNwAAgD8AAIA/zaTju+GaubgHYTs6Y/rhtWftyrsz6mG5AACAPwAAgD8tkGa+8ZZVPHVgjbviT205da3pvYhUX7oAAIA/AACAP5rAvL2Pll66kjukumZWhLOtBNi4kRi9OQAAgD8AAIA/2nZePvshsLyWX167pMS3OTv2G7454ow6AACAPwAAgD8awfs9Njt2vGgPJzwyv5A8rfzhvVBCaz0AAIA/AACAP2bW9DuuHY26frAAusJhIDZiYsY5fvoROQAAgD8AAIA/gKCWvVwzObq52ok7farTNoGmDLmldaO6AACAPwAAgD/6DFk+Ycv5vHeVKTt7IXq57E1cvlw6iLoAAIA/AACAP039JD17PqS6Jg3GO9vSizUjukO6VJGCNAAAgD8AAIA/Wrd2PgPpfrw6Kpi71HCKOSqD4b1oLVo6AACAPwAAgD8GBn8+FnsoP+6EhD6cB8G+RRRHPrn9DT4AAAAAAAAAAJq5WDpca0a6FW3Zu34FV7baq5A5PfXHNQAAgD8AAIA/rU0dPk7Bkbz2QME9zfSyO3jYpb0tgcW9AACAPwAAgD+UdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVdhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIChLb3YOEZECUhpRSlIwBbJRN6AOMAXSUR0CG70CPp6hQdX2UKGgGaAloD0MIC19f61JJXkCUhpRSlGgVTegDaBZHQIbxEZHd43Z1fZQoaAZoCWgPQwjvOEVHclheQJSGlFKUaBVN6ANoFkdAhvb59/jKgnV9lChoBmgJaA9DCFZmSutvbTlAlIaUUpRoFUu5aBZHQIb7KX8fmtB1fZQoaAZoCWgPQwhrEOZ2L/FPQJSGlFKUaBVN6ANoFkdAhwOo/A0sOHV9lChoBmgJaA9DCAk4hCo1wF9AlIaUUpRoFU3oA2gWR0CHBDT850bMdX2UKGgGaAloD0MICU/o9ad0YECUhpRSlGgVTegDaBZHQIcEOp++dsl1fZQoaAZoCWgPQwjswDkjSrtCQJSGlFKUaBVLvmgWR0CHBPnoPkJbdX2UKGgGaAloD0MIg6RPq+gaYECUhpRSlGgVTegDaBZHQIcLLWy1NQF1fZQoaAZoCWgPQwhR9wFIbZhiQJSGlFKUaBVN6ANoFkdAhwv1Ed/8VHV9lChoBmgJaA9DCMnJxK2CJGRAlIaUUpRoFU3oA2gWR0CHEOZccENfdX2UKGgGaAloD0MI3GYqxCPXYUCUhpRSlGgVTegDaBZHQIcRywbEP2B1fZQoaAZoCWgPQwg2AvG6fkkiQJSGlFKUaBVLwGgWR0CHF6PQOWjXdX2UKGgGaAloD0MIeLgdGhY5WECUhpRSlGgVTegDaBZHQIcZdjRUm2N1fZQoaAZoCWgPQwjDLLRzGkthQJSGlFKUaBVN6ANoFkdAh10t5+pfhXV9lChoBmgJaA9DCBnlmZfDdWVAlIaUUpRoFU3oA2gWR0CHZdlA/s3RdX2UKGgGaAloD0MIpPrOL8ojYECUhpRSlGgVTegDaBZHQIdvnfoA4n51fZQoaAZoCWgPQwhGQfD49iZfQJSGlFKUaBVN6ANoFkdAh342fK6nSHV9lChoBmgJaA9DCNY73A4Nr0xAlIaUUpRoFUuzaBZHQId+pNATqSp1fZQoaAZoCWgPQwhPdF34wUxhQJSGlFKUaBVN6ANoFkdAh45gGB4D93V9lChoBmgJaA9DCGCt2jUhV1BAlIaUUpRoFU3oA2gWR0CHlMXsPatcdX2UKGgGaAloD0MID167tOFkYUCUhpRSlGgVTegDaBZHQIeZQA4n4PB1fZQoaAZoCWgPQwjScMrcfNxhQJSGlFKUaBVN6ANoFkdAh6MBInSfDnV9lChoBmgJaA9DCEpDjUKS3WFAlIaUUpRoFU3oA2gWR0CHo4z544ZNdX2UKGgGaAloD0MIvr7WpUZZWkCUhpRSlGgVTegDaBZHQIekVO2y9mJ1fZQoaAZoCWgPQwjcnEoGgOVbQJSGlFKUaBVN6ANoFkdAh6q75mAbynV9lChoBmgJaA9DCM3Ji0zAll5AlIaUUpRoFU3oA2gWR0CHq47UXpGGdX2UKGgGaAloD0MIZjOHpJb6YUCUhpRSlGgVTegDaBZHQIewD/0dzXB1fZQoaAZoCWgPQwjMuKmBZiFkQJSGlFKUaBVN6ANoFkdAh7DUXgtOEnV9lChoBmgJaA9DCH0+yoiLMWFAlIaUUpRoFU3oA2gWR0CHtiJD3M6jdX2UKGgGaAloD0MIp3fxftxsVECUhpRSlGgVTegDaBZHQIe33NFBppN1fZQoaAZoCWgPQwjggQGED4UZQJSGlFKUaBVLtWgWR0CH7iTs6aLGdX2UKGgGaAloD0MI81fIXJmMYkCUhpRSlGgVTegDaBZHQIf6P8l5WzZ1fZQoaAZoCWgPQwgRNGYS9TZjQJSGlFKUaBVN6ANoFkdAiAt4fnwG4nV9lChoBmgJaA9DCAXbiCe7uUxAlIaUUpRoFU3oA2gWR0CIGiyiVSn+dX2UKGgGaAloD0MIlgoqqn4AXECUhpRSlGgVTegDaBZHQIgam5WilBR1fZQoaAZoCWgPQwiUoL/QIy5dQJSGlFKUaBVN6ANoFkdAiCodqUNayXV9lChoBmgJaA9DCLlVEANdEldAlIaUUpRoFU3oA2gWR0CIMIuUUwi8dX2UKGgGaAloD0MI/dzQlJ1kYkCUhpRSlGgVTegDaBZHQIg1ZavA44p1fZQoaAZoCWgPQwiNKVjj7DBjQJSGlFKUaBVN6ANoFkdAiD5mYSg5BHV9lChoBmgJaA9DCDeo/dZOM1hAlIaUUpRoFU3oA2gWR0CIPwy8jAzpdX2UKGgGaAloD0MIh97i4b3cYECUhpRSlGgVTegDaBZHQIg/081XNkh1fZQoaAZoCWgPQwhgd7rzxMhgQJSGlFKUaBVN6ANoFkdAiEYX1anrIHV9lChoBmgJaA9DCNv3qL9eMGFAlIaUUpRoFU3oA2gWR0CIRuF23azvdX2UKGgGaAloD0MIwtuDEJCnSECUhpRSlGgVS8JoFkdAiEcozN2TxHV9lChoBmgJaA9DCIEIceXsTFpAlIaUUpRoFU3oA2gWR0CIS04e9zwMdX2UKGgGaAloD0MICOQSR54+Y0CUhpRSlGgVTegDaBZHQIhMA+dK/VR1fZQoaAZoCWgPQwjog2Vs6MhXQJSGlFKUaBVN6ANoFkdAiFLjwYtQK3V9lChoBmgJaA9DCL8s7dRcmGJAlIaUUpRoFU3oA2gWR0CIiWBeXzDodX2UKGgGaAloD0MIck2BzM4LZUCUhpRSlGgVTegDaBZHQIiT+xQizLR1fZQoaAZoCWgPQwhMx5xn7N9hQJSGlFKUaBVN6ANoFkdAiKNJi7TUiXV9lChoBmgJaA9DCJwzorQ3f15AlIaUUpRoFU3oA2gWR0CIr1tXxOLzdX2UKGgGaAloD0MIFhVxOsmIX0CUhpRSlGgVTegDaBZHQIivuPBBRht1fZQoaAZoCWgPQwgaTwRxHklZQJSGlFKUaBVN6ANoFkdAiL2QTVUdaXV9lChoBmgJaA9DCMcrED0p51tAlIaUUpRoFU3oA2gWR0CIyBywwCbMdX2UKGgGaAloD0MIB84ZUdpHVECUhpRSlGgVTegDaBZHQIjRHVPN3W51fZQoaAZoCWgPQwhZox6i0WZfQJSGlFKUaBVN6ANoFkdAiNHCyY5T63V9lChoBmgJaA9DCIzzN6GQtWFAlIaUUpRoFU3oA2gWR0CI0q8U21lYdX2UKGgGaAloD0MI4zREFX4SYkCUhpRSlGgVTegDaBZHQIjZaZjQRf51fZQoaAZoCWgPQwgoCvSJPD5SQJSGlFKUaBVN6ANoFkdAiNo/fO2RaHV9lChoBmgJaA9DCFCJ6xhXEGFAlIaUUpRoFU3oA2gWR0CI2pKoybhFdX2UKGgGaAloD0MIwHYwYh+jYECUhpRSlGgVTegDaBZHQIje14FA3UB1fZQoaAZoCWgPQwg1tAHYgPZeQJSGlFKUaBVN6ANoFkdAiN+URvm5lXV9lChoBmgJaA9DCCRGzy10lRFAlIaUUpRoFUvgaBZHQIjgyuloDgZ1fZQoaAZoCWgPQwhKJTyhV+piQJSGlFKUaBVN6ANoFkdAiOY2SlnAZnV9lChoBmgJaA9DCCpUNxf/oGVAlIaUUpRoFU3oA2gWR0CJG7Y4hllLdX2UKGgGaAloD0MIh8CRQIOKW0CUhpRSlGgVTegDaBZHQIknQa5wwTN1fZQoaAZoCWgPQwiKHY1D/fljQJSGlFKUaBVN6ANoFkdAiTf9b5dnkHV9lChoBmgJaA9DCHYaaam8OF5AlIaUUpRoFU3oA2gWR0CJRrM36yjYdX2UKGgGaAloD0MIDFacai1IW0CUhpRSlGgVTegDaBZHQIlHLs2NvO11fZQoaAZoCWgPQwj752nAoPtiQJSGlFKUaBVN6ANoFkdAiVexNIsiCHV9lChoBmgJaA9DCKEuUigLR1VAlIaUUpRoFU3oA2gWR0CJbqBkI5YHdX2UKGgGaAloD0MIiBHCo43KX0CUhpRSlGgVTegDaBZHQIlvVo8IRiB1fZQoaAZoCWgPQwg+ldOeEtVhQJSGlFKUaBVN6ANoFkdAiXBfzBhx53V9lChoBmgJaA9DCDCEnPf/Zl5AlIaUUpRoFU3oA2gWR0CJeGHMUypJdX2UKGgGaAloD0MIHjNQGf+5YkCUhpRSlGgVTegDaBZHQIl5b2i+L3t1fZQoaAZoCWgPQwhWndUCewldQJSGlFKUaBVN6ANoFkdAiXnLvCuU2XV9lChoBmgJaA9DCAsnaf4YnGJAlIaUUpRoFU3oA2gWR0CJfrPmgam5dX2UKGgGaAloD0MIhQX3Ax7zX0CUhpRSlGgVTegDaBZHQIl/hyCFsYV1fZQoaAZoCWgPQwi+a9CX3tFQQJSGlFKUaBVN6ANoFkdAiYEEiliz9nV9lChoBmgJaA9DCLOXbaetqF1AlIaUUpRoFU3oA2gWR0CJhs3T/hl2dX2UKGgGaAloD0MILliqC3iJa0CUhpRSlGgVTWQBaBZHQIm8YcDKYAt1fZQoaAZoCWgPQwhQVgxXB1hlQJSGlFKUaBVN6ANoFkdAib2NfXwsoXV9lChoBmgJaA9DCO/H7ZdPGkZAlIaUUpRoFUvvaBZHQInGjRc/t6Z1fZQoaAZoCWgPQwjye5v+7HBeQJSGlFKUaBVN6ANoFkdAiciwCSzPbHV9lChoBmgJaA9DCDMWTWcn9GVAlIaUUpRoFU3oA2gWR0CJ2GCxNZeSdX2UKGgGaAloD0MIAI49ey5DGECUhpRSlGgVS71oFkdAid045tFa0XV9lChoBmgJaA9DCJlGk4uxEmNAlIaUUpRoFU3oA2gWR0CJ5a7kGRmsdX2UKGgGaAloD0MIAtNp3YYCZUCUhpRSlGgVTegDaBZHQInmEY2sJY11fZQoaAZoCWgPQwhKKH0h5B5dQJSGlFKUaBVN6ANoFkdAifRDA8B+4XV9lChoBmgJaA9DCIrKhjWVoGFAlIaUUpRoFU3oA2gWR0CKCPCMPz4DdX2UKGgGaAloD0MIu0c2V827YkCUhpRSlGgVTegDaBZHQIoJlDpkf9x1fZQoaAZoCWgPQwiFd7mI7wT9v5SGlFKUaBVLz2gWR0CKDs+2VmjCdX2UKGgGaAloD0MIN8MN+HxwYECUhpRSlGgVTegDaBZHQIoSXek56t11fZQoaAZoCWgPQwjd7uU+ucJlQJSGlFKUaBVN6ANoFkdAihNiItUXHnV9lChoBmgJaA9DCIEHBhC+jmFAlIaUUpRoFU3oA2gWR0CKE7wcYIjXdX2UKGgGaAloD0MIwvwVMleiYkCUhpRSlGgVTegDaBZHQIoYrilzltF1fZQoaAZoCWgPQwi610l92aNjQJSGlFKUaBVN6ANoFkdAihmK1w5vL3V9lChoBmgJaA9DCAKaCBueglhAlIaUUpRoFU3oA2gWR0CKGvsHjZL7dX2UKGgGaAloD0MIY/GbwkphOMCUhpRSlGgVS9JoFkdAiiiPkRzzVnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}