from transformers import PreTrainedModel, HubertModel import torch.nn as nn import torch from .configuration_emotion_classifier import EmotionClassifierConfig class EmotionClassifierHuBERT(PreTrainedModel): config_class = EmotionClassifierConfig def __init__(self, config): super().__init__(config) #self.hubert = HubertModel.from_pretrained("facebook/hubert-large-ls960-ft") self.hubert = HubertModel(config.hubert_config) self.conv1 = nn.Conv1d(in_channels=1024, out_channels=512, kernel_size=3, padding=1) self.conv2 = nn.Conv1d(in_channels=512, out_channels=256, kernel_size=3, padding=1) self.transformer_encoder = nn.TransformerEncoderLayer(d_model=256, nhead=8) self.bilstm = nn.LSTM(input_size=256, hidden_size=config.hidden_size_lstm, num_layers=2, batch_first=True, bidirectional=True) self.fc = nn.Linear(config.hidden_size_lstm * 2, config.num_classes) # * 2 for bidirectional def forward(self, x): with torch.no_grad(): features = self.hubert(x).last_hidden_state features = features.transpose(1, 2) x = torch.relu(self.conv1(features)) x = torch.relu(self.conv2(x)) x = x.transpose(1, 2) x = self.transformer_encoder(x) x, _ = self.bilstm(x) x = self.fc(x[:, -1, :]) return x