|
from transformers import PreTrainedModel, HubertModel |
|
import torch.nn as nn |
|
import torch |
|
from .configuration_emotion_classifier import EmotionClassifierConfig |
|
|
|
|
|
class EmotionClassifierHuBERT(PreTrainedModel): |
|
config_class = EmotionClassifierConfig |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.hubert = HubertModel(config.hubert_config) |
|
self.conv1 = nn.Conv1d(in_channels=1024, out_channels=512, kernel_size=3, padding=1) |
|
self.conv2 = nn.Conv1d(in_channels=512, out_channels=256, kernel_size=3, padding=1) |
|
self.transformer_encoder = nn.TransformerEncoderLayer(d_model=256, nhead=8) |
|
self.bilstm = nn.LSTM(input_size=256, hidden_size=config.hidden_size_lstm, num_layers=2, batch_first=True, bidirectional=True) |
|
self.fc = nn.Linear(config.hidden_size_lstm * 2, config.num_classes) |
|
|
|
def forward(self, x): |
|
with torch.no_grad(): |
|
features = self.hubert(x).last_hidden_state |
|
features = features.transpose(1, 2) |
|
x = torch.relu(self.conv1(features)) |
|
x = torch.relu(self.conv2(x)) |
|
x = x.transpose(1, 2) |
|
x = self.transformer_encoder(x) |
|
x, _ = self.bilstm(x) |
|
x = self.fc(x[:, -1, :]) |
|
return x |
|
|