[model_arguments] v2 = false v_parameterization = false pretrained_model_name_or_path = "/content/pretrained_model/AnyLoRA.safetensors" [additional_network_arguments] no_metadata = false unet_lr = 0.0005 network_module = "networks.lora" network_dim = 64 network_alpha = 32 network_train_unet_only = true network_train_text_encoder_only = false [optimizer_arguments] optimizer_type = "AdamW8bit" learning_rate = 0.0005 max_grad_norm = 1.0 lr_scheduler = "constant" lr_warmup_steps = 0 [dataset_arguments] debug_dataset = false in_json = "/content/LoRA/meta_lat.json" train_data_dir = "/content/LoRA/train_data" dataset_repeats = 1 shuffle_caption = true keep_tokens = 0 resolution = "512,512" caption_dropout_rate = 0 caption_tag_dropout_rate = 0 caption_dropout_every_n_epochs = 0 color_aug = false token_warmup_min = 1 token_warmup_step = 0 [training_arguments] output_dir = "/content/LoRA/output" output_name = "seaside-town" save_precision = "fp16" save_every_n_epochs = 25 train_batch_size = 6 max_token_length = 225 mem_eff_attn = false xformers = true max_train_epochs = 300 max_data_loader_n_workers = 8 persistent_data_loader_workers = true gradient_checkpointing = false gradient_accumulation_steps = 1 mixed_precision = "fp16" clip_skip = 2 logging_dir = "/content/LoRA/logs" log_prefix = "seaside-town" noise_offset = 0.2 lowram = true [sample_prompt_arguments] sample_every_n_epochs = 1 sample_sampler = "ddim" [saving_arguments] save_model_as = "safetensors"