--- license: mit base_model: microsoft/biogpt tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: [] --- # bert-finetuned-ner This model is a fine-tuned version of [microsoft/biogpt](https://huggingface.co./microsoft/biogpt) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1491 - Precision: 0.4416 - Recall: 0.5578 - F1: 0.4930 - Accuracy: 0.9576 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3004 | 1.0 | 679 | 0.1688 | 0.3313 | 0.4244 | 0.3721 | 0.9476 | | 0.1682 | 2.0 | 1358 | 0.1706 | 0.3805 | 0.5667 | 0.4553 | 0.9503 | | 0.0935 | 3.0 | 2037 | 0.1491 | 0.4416 | 0.5578 | 0.4930 | 0.9576 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2