File size: 1,696 Bytes
88e00b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c64b39
 
1d03c98
7c64b39
1d03c98
88e00b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c64b39
 
 
88e00b7
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: mit
base_model: microsoft/biogpt
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-finetuned-ner
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-finetuned-ner

This model is a fine-tuned version of [microsoft/biogpt](https://huggingface.co./microsoft/biogpt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0909
- Precision: 0.6831
- Recall: 0.7942
- F1: 0.7344
- Accuracy: 0.9787

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.1074        | 1.0   | 679  | 0.0666          | 0.6112    | 0.7891 | 0.6889 | 0.9764   |
| 0.0483        | 2.0   | 1358 | 0.0678          | 0.6894    | 0.8094 | 0.7446 | 0.9793   |
| 0.0136        | 3.0   | 2037 | 0.0909          | 0.6831    | 0.7942 | 0.7344 | 0.9787   |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2