--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer datasets: - yelp_review_full metrics: - accuracy model-index: - name: bbc results: - task: name: Text Classification type: text-classification dataset: name: yelp_review_full type: yelp_review_full config: yelp_review_full split: test args: yelp_review_full metrics: - name: Accuracy type: accuracy value: 0.499 --- # bbc This model is a fine-tuned version of [bert-base-cased](https://huggingface.co./bert-base-cased) on the yelp_review_full dataset. It achieves the following results on the evaluation set: - Loss: 1.1692 - Accuracy: 0.499 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 250 | 1.4265 | 0.391 | | 1.4806 | 2.0 | 500 | 1.2233 | 0.458 | | 1.4806 | 3.0 | 750 | 1.1692 | 0.499 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3