KashiwaByte
commited on
Commit
•
9d513ce
1
Parent(s):
c39e401
add model
Browse files- README.md +200 -1
- adapter_config.json +31 -0
- adapter_model.bin +3 -0
- xtuner_config.py +214 -0
README.md
CHANGED
@@ -1,3 +1,202 @@
|
|
1 |
---
|
2 |
-
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: /root/lanyun-tmp/ZhipuAI/chatglm3-6b
|
4 |
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.10.0
|
adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/root/lanyun-tmp/ZhipuAI/chatglm3-6b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 16,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 64,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"dense",
|
24 |
+
"dense_h_to_4h",
|
25 |
+
"dense_4h_to_h",
|
26 |
+
"query_key_value"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
adapter_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:df3bf84ded32ba8667b5fd8d00861735f38eb92918f0c310159be750170e703e
|
3 |
+
size 237260362
|
xtuner_config.py
ADDED
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
import torch
|
3 |
+
from datasets import load_dataset
|
4 |
+
from mmengine.dataset import DefaultSampler
|
5 |
+
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
|
6 |
+
LoggerHook, ParamSchedulerHook)
|
7 |
+
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
|
8 |
+
from peft import LoraConfig
|
9 |
+
from torch.optim import AdamW
|
10 |
+
from transformers import (AutoModelForCausalLM, AutoTokenizer,
|
11 |
+
BitsAndBytesConfig)
|
12 |
+
|
13 |
+
from xtuner.dataset import process_hf_dataset
|
14 |
+
from xtuner.dataset.collate_fns import default_collate_fn
|
15 |
+
from xtuner.dataset.map_fns import alpaca_map_fn, template_map_fn_factory
|
16 |
+
from xtuner.engine.hooks import (DatasetInfoHook, EvaluateChatHook,
|
17 |
+
VarlenAttnArgsToMessageHubHook)
|
18 |
+
from xtuner.engine.runner import TrainLoop
|
19 |
+
from xtuner.model import SupervisedFinetune
|
20 |
+
from xtuner.utils import PROMPT_TEMPLATE, SYSTEM_TEMPLATE
|
21 |
+
|
22 |
+
#######################################################################
|
23 |
+
# PART 1 Settings #
|
24 |
+
#######################################################################
|
25 |
+
# Model
|
26 |
+
pretrained_model_name_or_path = '/root/lanyun-tmp/ZhipuAI/chatglm3-6b'
|
27 |
+
use_varlen_attn = False
|
28 |
+
|
29 |
+
# Data
|
30 |
+
data_path = '/root/lanyun-tmp/Dataset/Xtuner_Read_Comperhension50k.jsonl'
|
31 |
+
prompt_template = PROMPT_TEMPLATE.chatglm3
|
32 |
+
max_length = 512
|
33 |
+
pack_to_max_length = True
|
34 |
+
|
35 |
+
# Scheduler & Optimizer
|
36 |
+
batch_size = 1 # per_device
|
37 |
+
accumulative_counts = 16
|
38 |
+
dataloader_num_workers = 0
|
39 |
+
max_epochs = 3
|
40 |
+
optim_type = AdamW
|
41 |
+
lr = 2e-4
|
42 |
+
betas = (0.9, 0.999)
|
43 |
+
weight_decay = 0
|
44 |
+
max_norm = 1 # grad clip
|
45 |
+
warmup_ratio = 0.03
|
46 |
+
|
47 |
+
# Save
|
48 |
+
save_steps = 500
|
49 |
+
save_total_limit = 2 # Maximum checkpoints to keep (-1 means unlimited)
|
50 |
+
|
51 |
+
# Evaluate the generation performance during the training
|
52 |
+
evaluation_freq = 500
|
53 |
+
SYSTEM = SYSTEM_TEMPLATE.alpaca
|
54 |
+
evaluation_inputs = [
|
55 |
+
"{'context': {'[DOC] [TLE] Belltown Pub - Seattle BoozeBelltown Pub - Seattle Booze [PAR] Trivia [PAR] Booze [PAR] (Q) \\xa0What popular drink did a Dutch medical professor produce in his laboratory while trying to come up with a blood cleanser that could be sold in drugstores? [PAR] (Q) Gin.'}, 'question': {'What popular drink did a Dutch medical professor produce in his laboratory while trying to come up with a blood cleanser that could be sold in drugstores?'}}", 'Please tell me five scenic spots in Shanghai', "{'context': {\"( See ! I ' m working on not being so damn shy ! ) I got in and got excellent seats . I think I was on the 3rd row , almost directly in front of Michael Rosenbaum !\"}, 'question': {'What sort of behavior type do they tend to possess ?'}, 'answer0': {'They tend to sit near the back of lectures'}, 'answer1': {'They tend to avoid sitting near the front'}, 'answer2': {'None of the above choices .'}, 'answer3': {'They tend to be a very shy person'}}"
|
56 |
+
|
57 |
+
]
|
58 |
+
|
59 |
+
#######################################################################
|
60 |
+
# PART 2 Model & Tokenizer #
|
61 |
+
#######################################################################
|
62 |
+
tokenizer = dict(
|
63 |
+
type=AutoTokenizer.from_pretrained,
|
64 |
+
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
65 |
+
trust_remote_code=True,
|
66 |
+
encode_special_tokens=True,
|
67 |
+
padding_side='left')
|
68 |
+
|
69 |
+
model = dict(
|
70 |
+
type=SupervisedFinetune,
|
71 |
+
use_varlen_attn=use_varlen_attn,
|
72 |
+
llm=dict(
|
73 |
+
type=AutoModelForCausalLM.from_pretrained,
|
74 |
+
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
75 |
+
trust_remote_code=True,
|
76 |
+
torch_dtype=torch.float16,
|
77 |
+
quantization_config=dict(
|
78 |
+
type=BitsAndBytesConfig,
|
79 |
+
load_in_4bit=True,
|
80 |
+
load_in_8bit=False,
|
81 |
+
llm_int8_threshold=6.0,
|
82 |
+
llm_int8_has_fp16_weight=False,
|
83 |
+
bnb_4bit_compute_dtype=torch.float16,
|
84 |
+
bnb_4bit_use_double_quant=True,
|
85 |
+
bnb_4bit_quant_type='nf4')),
|
86 |
+
lora=dict(
|
87 |
+
type=LoraConfig,
|
88 |
+
r=64,
|
89 |
+
lora_alpha=16,
|
90 |
+
lora_dropout=0.1,
|
91 |
+
bias='none',
|
92 |
+
task_type='CAUSAL_LM'))
|
93 |
+
|
94 |
+
#######################################################################
|
95 |
+
# PART 3 Dataset & Dataloader #
|
96 |
+
#######################################################################
|
97 |
+
alpaca_en = dict(
|
98 |
+
type=process_hf_dataset,
|
99 |
+
dataset=dict(type=load_dataset,path='json',data_files=dict(train=data_path)),
|
100 |
+
tokenizer=tokenizer,
|
101 |
+
max_length=max_length,
|
102 |
+
dataset_map_fn=None,
|
103 |
+
template_map_fn=dict(
|
104 |
+
type=template_map_fn_factory, template=prompt_template),
|
105 |
+
remove_unused_columns=True,
|
106 |
+
shuffle_before_pack=True,
|
107 |
+
pack_to_max_length=pack_to_max_length,
|
108 |
+
use_varlen_attn=use_varlen_attn)
|
109 |
+
|
110 |
+
train_dataloader = dict(
|
111 |
+
batch_size=batch_size,
|
112 |
+
num_workers=dataloader_num_workers,
|
113 |
+
dataset=alpaca_en,
|
114 |
+
sampler=dict(type=DefaultSampler, shuffle=True),
|
115 |
+
collate_fn=dict(type=default_collate_fn, use_varlen_attn=use_varlen_attn))
|
116 |
+
|
117 |
+
#######################################################################
|
118 |
+
# PART 4 Scheduler & Optimizer #
|
119 |
+
#######################################################################
|
120 |
+
# optimizer
|
121 |
+
optim_wrapper = dict(
|
122 |
+
type=AmpOptimWrapper,
|
123 |
+
optimizer=dict(
|
124 |
+
type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
|
125 |
+
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
|
126 |
+
accumulative_counts=accumulative_counts,
|
127 |
+
loss_scale='dynamic',
|
128 |
+
dtype='float16')
|
129 |
+
|
130 |
+
# learning policy
|
131 |
+
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501
|
132 |
+
param_scheduler = [
|
133 |
+
dict(
|
134 |
+
type=LinearLR,
|
135 |
+
start_factor=1e-5,
|
136 |
+
by_epoch=True,
|
137 |
+
begin=0,
|
138 |
+
end=warmup_ratio * max_epochs,
|
139 |
+
convert_to_iter_based=True),
|
140 |
+
dict(
|
141 |
+
type=CosineAnnealingLR,
|
142 |
+
eta_min=0.0,
|
143 |
+
by_epoch=True,
|
144 |
+
begin=warmup_ratio * max_epochs,
|
145 |
+
end=max_epochs,
|
146 |
+
convert_to_iter_based=True)
|
147 |
+
]
|
148 |
+
|
149 |
+
# train, val, test setting
|
150 |
+
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs)
|
151 |
+
|
152 |
+
#######################################################################
|
153 |
+
# PART 5 Runtime #
|
154 |
+
#######################################################################
|
155 |
+
# Log the dialogue periodically during the training process, optional
|
156 |
+
custom_hooks = [
|
157 |
+
dict(type=DatasetInfoHook, tokenizer=tokenizer),
|
158 |
+
dict(
|
159 |
+
type=EvaluateChatHook,
|
160 |
+
tokenizer=tokenizer,
|
161 |
+
every_n_iters=evaluation_freq,
|
162 |
+
evaluation_inputs=evaluation_inputs,
|
163 |
+
system=SYSTEM,
|
164 |
+
prompt_template=prompt_template)
|
165 |
+
]
|
166 |
+
|
167 |
+
if use_varlen_attn:
|
168 |
+
custom_hooks += [dict(type=VarlenAttnArgsToMessageHubHook)]
|
169 |
+
|
170 |
+
# configure default hooks
|
171 |
+
default_hooks = dict(
|
172 |
+
# record the time of every iteration.
|
173 |
+
timer=dict(type=IterTimerHook),
|
174 |
+
# print log every 10 iterations.
|
175 |
+
logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10),
|
176 |
+
# enable the parameter scheduler.
|
177 |
+
param_scheduler=dict(type=ParamSchedulerHook),
|
178 |
+
# save checkpoint per `save_steps`.
|
179 |
+
checkpoint=dict(
|
180 |
+
type=CheckpointHook,
|
181 |
+
by_epoch=False,
|
182 |
+
interval=save_steps,
|
183 |
+
max_keep_ckpts=save_total_limit),
|
184 |
+
# set sampler seed in distributed evrionment.
|
185 |
+
sampler_seed=dict(type=DistSamplerSeedHook),
|
186 |
+
)
|
187 |
+
|
188 |
+
# configure environment
|
189 |
+
env_cfg = dict(
|
190 |
+
# whether to enable cudnn benchmark
|
191 |
+
cudnn_benchmark=False,
|
192 |
+
# set multi process parameters
|
193 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
194 |
+
# set distributed parameters
|
195 |
+
dist_cfg=dict(backend='nccl'),
|
196 |
+
)
|
197 |
+
|
198 |
+
# set visualizer
|
199 |
+
visualizer = None
|
200 |
+
|
201 |
+
# set log level
|
202 |
+
log_level = 'INFO'
|
203 |
+
|
204 |
+
# load from which checkpoint
|
205 |
+
load_from = None
|
206 |
+
|
207 |
+
# whether to resume training from the loaded checkpoint
|
208 |
+
resume = False
|
209 |
+
|
210 |
+
# Defaults to use random seed and disable `deterministic`
|
211 |
+
randomness = dict(seed=None, deterministic=False)
|
212 |
+
|
213 |
+
# set log processor
|
214 |
+
log_processor = dict(by_epoch=False)
|