|
import tensorflow as tf |
|
from tensorflow.keras.models import load_model |
|
from tensorflow.keras.preprocessing.text import one_hot |
|
from tensorflow.keras.preprocessing.sequence import pad_sequences |
|
import numpy as np |
|
import pandas as pd |
|
|
|
test_title = ["spark an inner revolution"] |
|
|
|
labels = ["Reliable", "Unreliable"] |
|
|
|
vocab_size = 5000 |
|
paddingLen = 20 |
|
oneHotRep = [one_hot(words, vocab_size) for words in test_title] |
|
padded = pad_sequences(oneHotRep, truncating="post", padding="post", maxlen=paddingLen) |
|
|
|
x = np.array(padded) |
|
|
|
model = load_model("fake_news.h5") |
|
|
|
pred = model.predict_classes(x)[0] |
|
print(labels[int(pred)]) |