Kanon14 commited on
Commit
ad300a2
1 Parent(s): e4a314a

End of training

Browse files
Files changed (2) hide show
  1. README.md +87 -0
  2. model.safetensors +1 -1
README.md ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: ntu-spml/distilhubert
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - marsyas/gtzan
9
+ metrics:
10
+ - accuracy
11
+ model-index:
12
+ - name: distilhubert-finetuned-gtzan
13
+ results:
14
+ - task:
15
+ name: Audio Classification
16
+ type: audio-classification
17
+ dataset:
18
+ name: GTZAN
19
+ type: marsyas/gtzan
20
+ config: all
21
+ split: train
22
+ args: all
23
+ metrics:
24
+ - name: Accuracy
25
+ type: accuracy
26
+ value: 0.76
27
+ ---
28
+
29
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
30
+ should probably proofread and complete it, then remove this comment. -->
31
+
32
+ # distilhubert-finetuned-gtzan
33
+
34
+ This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
35
+ It achieves the following results on the evaluation set:
36
+ - Loss: 0.7292
37
+ - Accuracy: 0.76
38
+
39
+ ## Model description
40
+
41
+ More information needed
42
+
43
+ ## Intended uses & limitations
44
+
45
+ More information needed
46
+
47
+ ## Training and evaluation data
48
+
49
+ More information needed
50
+
51
+ ## Training procedure
52
+
53
+ ### Training hyperparameters
54
+
55
+ The following hyperparameters were used during training:
56
+ - learning_rate: 5e-05
57
+ - train_batch_size: 8
58
+ - eval_batch_size: 8
59
+ - seed: 42
60
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
+ - lr_scheduler_type: linear
62
+ - lr_scheduler_warmup_ratio: 0.1
63
+ - num_epochs: 10
64
+ - mixed_precision_training: Native AMP
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
+ | 1.9467 | 1.0 | 113 | 1.8128 | 0.48 |
71
+ | 1.2041 | 2.0 | 226 | 1.2371 | 0.66 |
72
+ | 1.0202 | 3.0 | 339 | 1.0576 | 0.67 |
73
+ | 0.6577 | 4.0 | 452 | 0.8418 | 0.75 |
74
+ | 0.5502 | 5.0 | 565 | 0.7090 | 0.8 |
75
+ | 0.4168 | 6.0 | 678 | 0.7108 | 0.82 |
76
+ | 0.2478 | 7.0 | 791 | 0.6318 | 0.81 |
77
+ | 0.1267 | 8.0 | 904 | 0.6704 | 0.78 |
78
+ | 0.1602 | 9.0 | 1017 | 0.7178 | 0.77 |
79
+ | 0.0857 | 10.0 | 1130 | 0.7292 | 0.76 |
80
+
81
+
82
+ ### Framework versions
83
+
84
+ - Transformers 4.44.2
85
+ - Pytorch 2.3.1+cu121
86
+ - Datasets 2.21.0
87
+ - Tokenizers 0.19.1
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:8d8cb19a466ab8d3ab7aaa07b93d93236a21ed52d67617db5a85baabbf92b46e
3
  size 94771728
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:819078524b1c49d1506bdc107e49f491ba2441d28410f358b4911d858efe5ec3
3
  size 94771728