File size: 1,267 Bytes
dbacf38 ba27de7 dbacf38 60bacf0 49fc965 60bacf0 49fc965 60bacf0 dbacf38 e76a410 dbacf38 60bacf0 49fc965 c3f9498 dbacf38 60bacf0 49fc965 e76a410 dbacf38 49fc965 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
---
license: apache-2.0
datasets:
- ILSVRC/imagenet-1k
pipeline_tag: image-classification
---
# Introduction
This repository stores the model for Resnet50v1.5, compatible with Kalray's neural network API. </br>
Please see www.github.com/kalray/kann-models-zoo for details and proper usage. </br>
Please see https://huggingface.co./docs/transformers/main/en/model_doc/resnet for Resnet model description. </br>
# Contents
- ONNX: resnet50v1.5.onnx
- Quantized ONNX (INT8): resnet50v1.5-q.onnx
- TFLite: resnet50v1.5.tflite
# Lecture note reference
- Deep Residual Learning for Image Recognition, https://arxiv.org/pdf/1512.03385.pdf
# Repository or links references
- [ONNX](https://github.com/onnx/models/blob/main/validated/vision/classification/resnet/README.md)
- [PyTorch | TorchVision](https://pytorch.org/vision/main/models/generated/torchvision.models.resnet50.html#torchvision.models.resnet50)
BibTeX entry and citation info
```
@inproceedings{he2016deep,
title={Deep residual learning for image recognition},
author={He, Kaiming and Zhang, Xiangyu and Ren, Shaoqing and Sun, Jian},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={770--778},
year={2016}
}
```
Author: [email protected] |