--- license: apache-2.0 base_model: albert/albert-base-v2 tags: - generated_from_trainer metrics: - accuracy model-index: - name: model_bert_7000_32 results: [] --- # model_bert_7000_32 This model is a fine-tuned version of [albert/albert-base-v2](https://huggingface.co./albert/albert-base-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0215 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 25 | 0.4051 | 0.92 | | No log | 2.0 | 50 | 0.1586 | 0.97 | | No log | 3.0 | 75 | 0.0592 | 0.98 | | No log | 4.0 | 100 | 0.0215 | 1.0 | | No log | 5.0 | 125 | 0.0514 | 0.98 | ### Framework versions - Transformers 4.40.0 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1