--- title: Medical3000 tags: - healthcare - NLP - dialogues - LLM - fine-tuned license: unknown datasets: - Kabatubare/medical-guanaco-3000 --- # Medical3000 Model Card This is a model card for Medical_3000, a fine-tuned version of TinyPixel/Llama-2-7B-bf16-sharded, specifically aimed at medical dialogues. ## Model Details ### Base Model - **Name**: TinyPixel/Llama-2-7B-bf16-sharded - **Description**: (A brief description of the base model, its architecture, and its intended use-cases) ### Fine-tuned Model - **Name**: Yo!Medical3000 - **Fine-tuned on**: Kabatubare/medical-guanaco-3000 - **Description**: This model is fine-tuned to specialize in medical dialogues and healthcare applications. ### Architecture and Training Parameters #### Architecture - **LoRA Attention Dimension**: 64 - **LoRA Alpha Parameter**: 16 - **LoRA Dropout**: 0.1 - **Precision**: 4-bit (bitsandbytes) - **Quantization Type**: nf4 #### Training Parameters - **Epochs**: 3 - **Batch Size**: 4 - **Gradient Accumulation Steps**: 1 - **Max Gradient Norm**: 0.3 - **Learning Rate**: 3e-4 - **Weight Decay**: 0.001 - **Optimizer**: paged_adamw_32bit - **LR Scheduler**: cosine - **Warmup Ratio**: 0.03 - **Logging Steps**: 25 ## Datasets ### Base Model Dataset - **Name**: (Name of the dataset used for the base model) - **Description**: (A brief description of this dataset and its characteristics) ### Fine-tuning Dataset - **Name**: Kabatubare/medical-guanaco-3000 - **Description**: This is a reduced and balanced dataset curated from a larger medical dialogue dataset. It aims to cover a broad range of medical topics and is suitable for training healthcare chatbots and conducting medical NLP research. ## Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("Yo!Medical3000") model = AutoModelForCausalLM.from_pretrained("Yo!Medical3000") # Use the model for inference