KYAGABA commited on
Commit
de146ec
·
verified ·
1 Parent(s): 078f82b

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +42 -0
README.md ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Combined Multimodal Model
2
+
3
+ This model performs medical image classification and report generation using a custom architecture that combines a video model and a text generation model.
4
+
5
+ ## Model Details
6
+
7
+ - **Architecture**: Custom model combining a 3D ResNet (`r3d_18`) and BioBART.
8
+ - **Tasks**:
9
+ - **Classification**: Classifies medical images into one of four classes: acute, normal, chronic, or lacunar.
10
+ - **Report Generation**: Generates medical reports based on the input images.
11
+
12
+ ## Usage
13
+
14
+ ```python
15
+ import torch
16
+ from transformers import AutoTokenizer
17
+ from model import CombinedModel, ImageToTextProjector
18
+ from torchvision import models
19
+
20
+ # Load tokenizer
21
+ tokenizer = AutoTokenizer.from_pretrained("YOUR_HF_USERNAME/combined-multimodal-model")
22
+
23
+ # Initialize models
24
+ video_model = models.video.r3d_18(pretrained=True)
25
+ video_model.fc = torch.nn.Linear(video_model.fc.in_features, 512)
26
+
27
+ report_generator = AutoModelForSeq2SeqLM.from_pretrained("GanjinZero/biobart-v2-base")
28
+
29
+ projector = ImageToTextProjector(512, report_generator.config.d_model)
30
+
31
+ num_classes = 4
32
+ combined_model = CombinedModel(video_model, report_generator, num_classes, projector)
33
+
34
+ # Load state dict
35
+ state_dict = torch.hub.load_state_dict_from_url(
36
+ "https://huggingface.co/YOUR_HF_USERNAME/combined-multimodal-model/resolve/main/pytorch_model.bin",
37
+ map_location=torch.device('cpu')
38
+ )
39
+ combined_model.load_state_dict(state_dict)
40
+ combined_model.eval()
41
+
42
+ # Now you can use combined_model for inference