Update README.md
Browse files
README.md
CHANGED
@@ -15,11 +15,11 @@ metrics:
|
|
15 |
Este es modelo resultado de un finetuning de
|
16 |
[FacebookAI/xlm-roberta-large-finetuned-conll03-english](https://huggingface.co/FacebookAI/xlm-roberta-large-finetuned-conll03-english) sobre el conll2002 dataset.
|
17 |
Los siguientes son los resultados sobre el conjunto de evaluación:
|
18 |
-
- Loss: 0.
|
19 |
-
- Precision: 0.
|
20 |
-
- Recall: 0.
|
21 |
-
- F1: 0.
|
22 |
-
- Accuracy: 0.
|
23 |
|
24 |
|
25 |
### Model Description
|
@@ -65,11 +65,21 @@ The following hyperparameters were used during training:
|
|
65 |
- seed=42,
|
66 |
|
67 |
### Training results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
-
|
|
70 |
-
|
71 |
-
|
|
72 |
-
|
|
73 |
-
|
|
74 |
-
|
|
75 |
-
| 0.0125 | 5.0 | 10405 | 0.1364 | 0.8806 | 0.8897 | 0.8851 | 0.9806 |
|
|
|
15 |
Este es modelo resultado de un finetuning de
|
16 |
[FacebookAI/xlm-roberta-large-finetuned-conll03-english](https://huggingface.co/FacebookAI/xlm-roberta-large-finetuned-conll03-english) sobre el conll2002 dataset.
|
17 |
Los siguientes son los resultados sobre el conjunto de evaluación:
|
18 |
+
- Loss: 0.17227034270763397
|
19 |
+
- Precision: 0.8140103176758078
|
20 |
+
- Recall: 0.8423714526552403
|
21 |
+
- F1: 0.8279480806407071
|
22 |
+
- Accuracy: 0.9781214374225526
|
23 |
|
24 |
|
25 |
### Model Description
|
|
|
65 |
- seed=42,
|
66 |
|
67 |
### Training results
|
68 |
+
| Metric | Value |
|
69 |
+
|-----------------|-------------|
|
70 |
+
| eval_loss | 0.17227034270763397 |
|
71 |
+
| eval_precision | 0.8140103176758078 |
|
72 |
+
| eval_recall | 0.8423714526552403 |
|
73 |
+
| eval_f1 | 0.8279480806407071 |
|
74 |
+
| eval_accuracy | 0.9781214374225526 |
|
75 |
+
| eval_runtime | 7.6283 |
|
76 |
+
| eval_samples_per_second | 198.995 |
|
77 |
+
| eval_steps_per_second | 24.907 |
|
78 |
+
| epoch | 5.0 |
|
79 |
|
80 |
+
| Label | Precision | Recall | F1 | Number |
|
81 |
+
|--------|-----------|--------|------------|--------|
|
82 |
+
| LOC | 0.8303085299455535 | 0.8440959409594095 | 0.8371454711802379 | 1084 |
|
83 |
+
| MISC | 0.5976331360946746 | 0.5941176470588235 | 0.5958702064896756 | 340 |
|
84 |
+
| ORG | 0.7989276139410187 | 0.8514285714285714 | 0.8243430152143845 | 1400 |
|
85 |
+
| PER | 0.9174434087882823 | 0.9374149659863945 | 0.9273216689098251 | 735 |
|
|