kimsan0622
commited on
Commit
·
b2024af
1
Parent(s):
a9888f7
Upload model
Browse files- config.json +179 -0
- configuration_veld.py +129 -0
- modeling_veld.py +0 -0
- pytorch_model.bin +3 -0
config.json
ADDED
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_commit_hash": null,
|
3 |
+
"_name_or_path": "checkpoints/veld_e1_linear",
|
4 |
+
"architectures": [
|
5 |
+
"VELDModel"
|
6 |
+
],
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "configuration_veld.VELDConfig",
|
9 |
+
"AutoModel": "modeling_veld.VELDModel"
|
10 |
+
},
|
11 |
+
"decoder": {
|
12 |
+
"_name_or_path": "KETI-AIR/ke-t5-base",
|
13 |
+
"add_cross_attention": true,
|
14 |
+
"architectures": [
|
15 |
+
"T5DualDecoderDoubleHeadsModel"
|
16 |
+
],
|
17 |
+
"bad_words_ids": null,
|
18 |
+
"bos_token_id": null,
|
19 |
+
"chunk_size_feed_forward": 0,
|
20 |
+
"cross_attention_hidden_size": null,
|
21 |
+
"d_ff": 2048,
|
22 |
+
"d_kv": 64,
|
23 |
+
"d_model": 768,
|
24 |
+
"decoder_start_token_id": 0,
|
25 |
+
"dense_act_fn": "gelu_new",
|
26 |
+
"diversity_penalty": 0.0,
|
27 |
+
"do_sample": false,
|
28 |
+
"dropout_rate": 0.1,
|
29 |
+
"early_stopping": false,
|
30 |
+
"encoder_no_repeat_ngram_size": 0,
|
31 |
+
"eos_token_id": 1,
|
32 |
+
"exponential_decay_length_penalty": null,
|
33 |
+
"feed_forward_proj": "gated-gelu",
|
34 |
+
"finetuning_task": null,
|
35 |
+
"forced_bos_token_id": null,
|
36 |
+
"forced_eos_token_id": null,
|
37 |
+
"id2label": {
|
38 |
+
"0": "LABEL_0",
|
39 |
+
"1": "LABEL_1"
|
40 |
+
},
|
41 |
+
"initializer_factor": 1.0,
|
42 |
+
"is_decoder": true,
|
43 |
+
"is_encoder_decoder": false,
|
44 |
+
"is_gated_act": true,
|
45 |
+
"label2id": {
|
46 |
+
"LABEL_0": 0,
|
47 |
+
"LABEL_1": 1
|
48 |
+
},
|
49 |
+
"layer_norm_epsilon": 1e-06,
|
50 |
+
"length_penalty": 1.0,
|
51 |
+
"max_length": 20,
|
52 |
+
"min_length": 0,
|
53 |
+
"model_type": "t5",
|
54 |
+
"n_positions": 512,
|
55 |
+
"no_repeat_ngram_size": 0,
|
56 |
+
"num_beam_groups": 1,
|
57 |
+
"num_beams": 1,
|
58 |
+
"num_decoder_layers": 12,
|
59 |
+
"num_heads": 12,
|
60 |
+
"num_layers": 12,
|
61 |
+
"num_return_sequences": 1,
|
62 |
+
"output_attentions": false,
|
63 |
+
"output_hidden_states": false,
|
64 |
+
"output_scores": false,
|
65 |
+
"pad_token_id": 0,
|
66 |
+
"prefix": null,
|
67 |
+
"problem_type": null,
|
68 |
+
"pruned_heads": {},
|
69 |
+
"relative_attention_max_distance": 128,
|
70 |
+
"relative_attention_num_buckets": 32,
|
71 |
+
"remove_invalid_values": false,
|
72 |
+
"repetition_penalty": 1.0,
|
73 |
+
"return_dict": true,
|
74 |
+
"return_dict_in_generate": false,
|
75 |
+
"sep_token_id": null,
|
76 |
+
"task_specific_params": null,
|
77 |
+
"temperature": 1.0,
|
78 |
+
"tf_legacy_loss": false,
|
79 |
+
"tie_encoder_decoder": false,
|
80 |
+
"tie_word_embeddings": true,
|
81 |
+
"tokenizer_class": null,
|
82 |
+
"top_k": 50,
|
83 |
+
"top_p": 1.0,
|
84 |
+
"torch_dtype": null,
|
85 |
+
"torchscript": false,
|
86 |
+
"transformers_version": "4.22.1",
|
87 |
+
"typical_p": 1.0,
|
88 |
+
"use_bfloat16": false,
|
89 |
+
"use_cache": true,
|
90 |
+
"vocab_size": 64128
|
91 |
+
},
|
92 |
+
"encoder": {
|
93 |
+
"_name_or_path": "google/vit-base-patch16-384",
|
94 |
+
"add_cross_attention": false,
|
95 |
+
"architectures": [
|
96 |
+
"ViTForImageClassification"
|
97 |
+
],
|
98 |
+
"attention_probs_dropout_prob": 0.0,
|
99 |
+
"bad_words_ids": null,
|
100 |
+
"bos_token_id": null,
|
101 |
+
"chunk_size_feed_forward": 0,
|
102 |
+
"cross_attention_hidden_size": null,
|
103 |
+
"decoder_start_token_id": null,
|
104 |
+
"diversity_penalty": 0.0,
|
105 |
+
"do_sample": false,
|
106 |
+
"early_stopping": false,
|
107 |
+
"encoder_no_repeat_ngram_size": 0,
|
108 |
+
"encoder_stride": 16,
|
109 |
+
"eos_token_id": null,
|
110 |
+
"exponential_decay_length_penalty": null,
|
111 |
+
"finetuning_task": null,
|
112 |
+
"forced_bos_token_id": null,
|
113 |
+
"forced_eos_token_id": null,
|
114 |
+
"hidden_act": "gelu",
|
115 |
+
"hidden_dropout_prob": 0.0,
|
116 |
+
"hidden_size": 768,
|
117 |
+
"id2label": {
|
118 |
+
"0": "LABEL_0",
|
119 |
+
"1": "LABEL_1"
|
120 |
+
},
|
121 |
+
"image_size": 384,
|
122 |
+
"initializer_range": 0.02,
|
123 |
+
"intermediate_size": 3072,
|
124 |
+
"is_decoder": false,
|
125 |
+
"is_encoder_decoder": false,
|
126 |
+
"label2id": {
|
127 |
+
"LABEL_0": 0,
|
128 |
+
"LABEL_1": 1
|
129 |
+
},
|
130 |
+
"layer_norm_eps": 1e-12,
|
131 |
+
"length_penalty": 1.0,
|
132 |
+
"max_length": 20,
|
133 |
+
"min_length": 0,
|
134 |
+
"model_type": "vit",
|
135 |
+
"no_repeat_ngram_size": 0,
|
136 |
+
"num_attention_heads": 12,
|
137 |
+
"num_beam_groups": 1,
|
138 |
+
"num_beams": 1,
|
139 |
+
"num_channels": 3,
|
140 |
+
"num_hidden_layers": 12,
|
141 |
+
"num_return_sequences": 1,
|
142 |
+
"output_attentions": false,
|
143 |
+
"output_hidden_states": false,
|
144 |
+
"output_scores": false,
|
145 |
+
"pad_token_id": null,
|
146 |
+
"patch_size": 16,
|
147 |
+
"prefix": null,
|
148 |
+
"problem_type": null,
|
149 |
+
"pruned_heads": {},
|
150 |
+
"qkv_bias": true,
|
151 |
+
"remove_invalid_values": false,
|
152 |
+
"repetition_penalty": 1.0,
|
153 |
+
"return_dict": true,
|
154 |
+
"return_dict_in_generate": false,
|
155 |
+
"sep_token_id": null,
|
156 |
+
"task_specific_params": null,
|
157 |
+
"temperature": 1.0,
|
158 |
+
"tf_legacy_loss": false,
|
159 |
+
"tie_encoder_decoder": false,
|
160 |
+
"tie_word_embeddings": true,
|
161 |
+
"tokenizer_class": null,
|
162 |
+
"top_k": 50,
|
163 |
+
"top_p": 1.0,
|
164 |
+
"torch_dtype": null,
|
165 |
+
"torchscript": false,
|
166 |
+
"transformers_version": "4.22.1",
|
167 |
+
"typical_p": 1.0,
|
168 |
+
"use_bfloat16": false
|
169 |
+
},
|
170 |
+
"eos_token_id": 1,
|
171 |
+
"is_encoder_decoder": true,
|
172 |
+
"model_type": "veld",
|
173 |
+
"num_queries_global": 1,
|
174 |
+
"num_queries_local": 256,
|
175 |
+
"pad_token_id": 0,
|
176 |
+
"tie_word_embeddings": false,
|
177 |
+
"torch_dtype": "float32",
|
178 |
+
"transformers_version": null
|
179 |
+
}
|
configuration_veld.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022, The T5 Authors and HuggingFace Inc, san kim.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" vision-encoder-language-decoder-t5 model configuration"""
|
16 |
+
import copy
|
17 |
+
|
18 |
+
from transformers.configuration_utils import PretrainedConfig
|
19 |
+
from transformers.utils import logging
|
20 |
+
from transformers.models.auto.configuration_auto import AutoConfig
|
21 |
+
from transformers import T5Config, ViTConfig
|
22 |
+
|
23 |
+
|
24 |
+
logger = logging.get_logger(__name__)
|
25 |
+
|
26 |
+
class VELDConfig(PretrainedConfig):
|
27 |
+
r"""
|
28 |
+
[`VELDConfig`] is the configuration class to store the configuration of a
|
29 |
+
[`VELDConfig`]. It is used to instantiate a Vision-Encoder-Text-Decoder model according to the
|
30 |
+
specified arguments, defining the encoder and decoder configs.
|
31 |
+
|
32 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
33 |
+
documentation from [`PretrainedConfig`] for more information.
|
34 |
+
|
35 |
+
Args:
|
36 |
+
kwargs (*optional*):
|
37 |
+
Dictionary of keyword arguments. Notably:
|
38 |
+
|
39 |
+
- **encoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that defines
|
40 |
+
the encoder config.
|
41 |
+
- **decoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that defines
|
42 |
+
the decoder config.
|
43 |
+
|
44 |
+
Examples:
|
45 |
+
|
46 |
+
```python
|
47 |
+
>>> from transformers import T5Config, ViTConfig
|
48 |
+
>>> from configuration_veld import VELDConfig
|
49 |
+
>>> from modeling_veld import VELDModel
|
50 |
+
|
51 |
+
>>> # Initializing a ViT & T5 style configuration
|
52 |
+
>>> config_encoder = ViTConfig()
|
53 |
+
>>> config_decoder = T5Config()
|
54 |
+
|
55 |
+
>>> config = VELDConfig.from_encoder_decoder_configs(config_encoder, config_decoder)
|
56 |
+
|
57 |
+
>>> # Initializing a ViTBert model from a ViT & bert-base-uncased style configurations
|
58 |
+
>>> model = VELDModel(config=config)
|
59 |
+
|
60 |
+
>>> # Accessing the model configuration
|
61 |
+
>>> config_encoder = model.config.encoder
|
62 |
+
>>> config_decoder = model.config.decoder
|
63 |
+
>>> # set decoder config to causal lm
|
64 |
+
>>> config_decoder.is_decoder = True
|
65 |
+
>>> config_decoder.add_cross_attention = True
|
66 |
+
|
67 |
+
>>> # Saving the model, including its configuration
|
68 |
+
>>> model.save_pretrained("my-model")
|
69 |
+
|
70 |
+
>>> # loading model and config from pretrained folder
|
71 |
+
>>> encoder_decoder_config = VELDConfig.from_pretrained("my-model")
|
72 |
+
>>> model = VELDModel.from_pretrained("my-model", config=encoder_decoder_config)
|
73 |
+
```"""
|
74 |
+
model_type = "veld"
|
75 |
+
is_composition = True
|
76 |
+
|
77 |
+
def __init__(self, **kwargs):
|
78 |
+
super().__init__(**kwargs)
|
79 |
+
if "encoder" not in kwargs or "decoder" not in kwargs:
|
80 |
+
raise ValueError(
|
81 |
+
f"A configuraton of type {self.model_type} cannot be instantiated because "
|
82 |
+
f"not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}"
|
83 |
+
)
|
84 |
+
|
85 |
+
encoder_config = kwargs.pop("encoder")
|
86 |
+
encoder_model_type = encoder_config.pop("model_type")
|
87 |
+
decoder_config = kwargs.pop("decoder")
|
88 |
+
decoder_model_type = decoder_config.pop("model_type")
|
89 |
+
|
90 |
+
self.encoder = ViTConfig(**encoder_config)
|
91 |
+
self.decoder = T5Config(**decoder_config)
|
92 |
+
self.is_encoder_decoder = True
|
93 |
+
|
94 |
+
self.pad_token_id=self.decoder.pad_token_id
|
95 |
+
self.eos_token_id=self.decoder.eos_token_id
|
96 |
+
|
97 |
+
self.num_queries_global = getattr(kwargs, "num_queries_global", 1)
|
98 |
+
self.num_queries_local = getattr(kwargs, "num_queries_local", 256)
|
99 |
+
|
100 |
+
|
101 |
+
@classmethod
|
102 |
+
def from_encoder_decoder_configs(
|
103 |
+
cls, encoder_config: PretrainedConfig, decoder_config: T5Config, **kwargs
|
104 |
+
) -> PretrainedConfig:
|
105 |
+
r"""
|
106 |
+
Instantiate a [`VELDConfig`] (or a derived class) from a pre-trained encoder model
|
107 |
+
configuration and decoder model configuration.
|
108 |
+
|
109 |
+
Returns:
|
110 |
+
[`VELDConfig`]: An instance of a configuration object
|
111 |
+
"""
|
112 |
+
logger.info("Setting `config.is_decoder=True` and `config.is_encoder_decoder=False` for decoder_config")
|
113 |
+
decoder_config.is_decoder = True
|
114 |
+
decoder_config.is_encoder_decoder = False
|
115 |
+
|
116 |
+
return cls(encoder=encoder_config.to_dict(), decoder=decoder_config.to_dict(), **kwargs)
|
117 |
+
|
118 |
+
def to_dict(self):
|
119 |
+
"""
|
120 |
+
Serializes this instance to a Python dictionary. Override the default *to_dict()* from *PretrainedConfig*.
|
121 |
+
|
122 |
+
Returns:
|
123 |
+
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
|
124 |
+
"""
|
125 |
+
output = copy.deepcopy(self.__dict__)
|
126 |
+
output["encoder"] = self.encoder.to_dict()
|
127 |
+
output["decoder"] = self.decoder.to_dict()
|
128 |
+
output["model_type"] = self.__class__.model_type
|
129 |
+
return output
|
modeling_veld.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c0f321d19a471b793b277694b2adf577c807c7b35f087ea2b89669b74feb5467
|
3 |
+
size 1354141353
|