DanTagGen - beta
DanTagGen(Danbooru Tag Generator) is inspired from p1atdev's dart project. But with different arch, dataset, format and different training strategy.
Difference between versions
alpha: pretrain on 2M dataset, smaller batch size. Limited ability beta: pretrain on 5.3M dataset, larger batch size. More stable, better ability with only a few information provided.
Examples
Example1: Vivlos
Base prompt:
1girl,
vivlos \(umamusume\), umamusume,
kxl-delta-style1,
swimsuit,
masterpiece, newest, absurdres, sensitive
Example2: Daring Tact
Base prompt:
1girl,
daring tact \(umamusume\), umamusume,
kxl-delta-style1,
horse girl, horse tail, horse ears, cafe, table, chair,
masterpiece, newest, absurdres, safe
Model arch
This version of DTG is trained from scratch with 400M param LLaMA arch.(In my personal preference I will call it NanoLLaMA) Since it is llama arch. Theoritically it should be able to be used in any LLaMA inference interface.
This repo also provided converted FP16 gguf model and quantized 8bit/6bit gguf models. Basically it is recommended to use llama.cpp or llama-cpp-python to run this model. Which will be very fast.
Format
prompt = f"""
rating: {rating or '<|empty|>'}
artist: {artist.strip() or '<|empty|>'}
characters: {characters.strip() or '<|empty|>'}
copyrights: {copyrights.strip() or '<|empty|>'}
aspect ratio: {f"{aspect_ratio:.1f}" or '<|empty|>'}
target: {'<|' + target + '|>' if target else '<|long|>'}
general: {", ".join(special_tags)}, {general.strip().strip(",")}<|input_end|>
"""
for example:
rating: safe
artist: <|empty|>
characters: <|empty|>
copyrights: <|empty|>
aspect ratio: 1.0
target: <|short|>
general: 1girl, solo, dragon girl, dragon horns, dragon tail<|input_end|>
And you may get something like:
rating: safe
artist: <|empty|>
characters: <|empty|>
copyrights: <|empty|>
aspect ratio: 1.0
target: <|short|>
general: 1girl, solo, dragon girl, dragon horns, dragon tail<|input_end|>open mouth, red eyes, long hair, pointy ears, tail, black hair, chinese clothes, simple background, dragon, hair between eyes, horns, china dress, dress, looking at viewer, breasts
Dataset and Training
I use the trainer I implemented in HakuPhi to run the training. with 10epoch on 5.3M data. This model have roughly 6~12B token seen.
The dataset is exported by HakuBooru with my danbooru sqlite database. Use the percentile of fav_count on each rating to filter the data. (2M = top 25%, 5.3M = top 75%)
Utilities
I'm implementing a gradio UI for this thing and other dev can utilize the API in it to make different app. I'm also planning to make sd-webui extension.
- Downloads last month
- 20,957