--- license: cc-by-nc-sa-4.0 base_model: microsoft/layoutlmv3-base tags: - generated_from_trainer datasets: - datasetprepfrom_gcp metrics: - precision - recall - f1 - accuracy model-index: - name: model10.0 results: - task: name: Token Classification type: token-classification dataset: name: datasetprepfrom_gcp type: datasetprepfrom_gcp config: discharge split: test args: discharge metrics: - name: Precision type: precision value: 0.7824019024970273 - name: Recall type: recall value: 0.7396028475084301 - name: F1 type: f1 value: 0.7984006163328197 - name: Accuracy type: accuracy value: 0.9480585417540451 --- # model10.0 This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co./microsoft/layoutlmv3-base) on the datasetprepfrom_gcp dataset. It achieves the following results on the evaluation set: - Loss: 0.3117 - Precision: 0.7824 - Recall: 0.7396 - F1: 0.7604 - Accuracy: 0.9481 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 10000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 0.1094 | 100 | 1.1070 | 0.0820 | 0.0037 | 0.0072 | 0.8202 | | No log | 0.2188 | 200 | 0.9957 | 0.0449 | 0.0049 | 0.0088 | 0.8244 | | No log | 0.3282 | 300 | 0.9355 | 0.1949 | 0.0590 | 0.0906 | 0.8338 | | No log | 0.4376 | 400 | 0.8255 | 0.2373 | 0.1223 | 0.1614 | 0.8453 | | 1.0172 | 0.5470 | 500 | 0.7511 | 0.3185 | 0.1510 | 0.2049 | 0.8489 | | 1.0172 | 0.6565 | 600 | 0.7203 | 0.3609 | 0.1997 | 0.2571 | 0.8510 | | 1.0172 | 0.7659 | 700 | 0.6571 | 0.4256 | 0.2565 | 0.3200 | 0.8755 | | 1.0172 | 0.8753 | 800 | 0.5845 | 0.4510 | 0.3127 | 0.3693 | 0.8873 | | 1.0172 | 0.9847 | 900 | 0.5614 | 0.5053 | 0.3477 | 0.4119 | 0.8948 | | 0.45 | 1.0941 | 1000 | 0.5126 | 0.5561 | 0.3818 | 0.4527 | 0.9042 | | 0.45 | 1.2035 | 1100 | 0.5350 | 0.5790 | 0.4176 | 0.4852 | 0.9092 | | 0.45 | 1.3129 | 1200 | 0.4846 | 0.5449 | 0.4562 | 0.4966 | 0.9068 | | 0.45 | 1.4223 | 1300 | 0.4681 | 0.6153 | 0.4843 | 0.5420 | 0.9149 | | 0.45 | 1.5317 | 1400 | 0.4807 | 0.6572 | 0.4874 | 0.5598 | 0.9164 | | 0.2388 | 1.6411 | 1500 | 0.4096 | 0.5848 | 0.5264 | 0.5541 | 0.9146 | | 0.2388 | 1.7505 | 1600 | 0.3991 | 0.6344 | 0.5474 | 0.5877 | 0.9203 | | 0.2388 | 1.8600 | 1700 | 0.4044 | 0.5996 | 0.5691 | 0.5840 | 0.9185 | | 0.2388 | 1.9694 | 1800 | 0.4065 | 0.6607 | 0.5869 | 0.6216 | 0.9258 | | 0.2388 | 2.0788 | 1900 | 0.4159 | 0.6018 | 0.5802 | 0.5908 | 0.9123 | | 0.1768 | 2.1882 | 2000 | 0.4203 | 0.6846 | 0.5822 | 0.6293 | 0.9268 | | 0.1768 | 2.2976 | 2100 | 0.3934 | 0.6566 | 0.5954 | 0.6245 | 0.9276 | | 0.1768 | 2.4070 | 2200 | 0.3879 | 0.7137 | 0.6038 | 0.6542 | 0.9313 | | 0.1768 | 2.5164 | 2300 | 0.3829 | 0.5685 | 0.6326 | 0.5989 | 0.9175 | | 0.1768 | 2.6258 | 2400 | 0.3508 | 0.7175 | 0.6191 | 0.6647 | 0.9328 | | 0.1399 | 2.7352 | 2500 | 0.3215 | 0.6869 | 0.6311 | 0.6578 | 0.9327 | | 0.1399 | 2.8446 | 2600 | 0.3271 | 0.7248 | 0.6171 | 0.6666 | 0.9358 | | 0.1399 | 2.9540 | 2700 | 0.3226 | 0.6491 | 0.6544 | 0.6517 | 0.9277 | | 0.1399 | 3.0635 | 2800 | 0.3336 | 0.6596 | 0.6386 | 0.6490 | 0.9278 | | 0.1399 | 3.1729 | 2900 | 0.3423 | 0.6480 | 0.6624 | 0.6551 | 0.9314 | | 0.1083 | 3.2823 | 3000 | 0.3698 | 0.7509 | 0.6566 | 0.7006 | 0.9372 | | 0.1083 | 3.3917 | 3100 | 0.3353 | 0.6457 | 0.6649 | 0.6552 | 0.9287 | | 0.1083 | 3.5011 | 3200 | 0.3391 | 0.7518 | 0.6626 | 0.7044 | 0.9383 | | 0.1083 | 3.6105 | 3300 | 0.3314 | 0.7350 | 0.6699 | 0.7010 | 0.9381 | | 0.1083 | 3.7199 | 3400 | 0.3338 | 0.6728 | 0.6832 | 0.6779 | 0.9347 | | 0.0988 | 3.8293 | 3500 | 0.3239 | 0.7509 | 0.6753 | 0.7111 | 0.9369 | | 0.0988 | 3.9387 | 3600 | 0.3481 | 0.7555 | 0.6564 | 0.7025 | 0.9395 | | 0.0988 | 4.0481 | 3700 | 0.3231 | 0.6749 | 0.6883 | 0.6815 | 0.9348 | | 0.0988 | 4.1575 | 3800 | 0.3581 | 0.7669 | 0.6699 | 0.7151 | 0.9411 | | 0.0988 | 4.2670 | 3900 | 0.3213 | 0.7174 | 0.6873 | 0.7021 | 0.9389 | | 0.0775 | 4.3764 | 4000 | 0.3244 | 0.7433 | 0.6738 | 0.7069 | 0.9387 | | 0.0775 | 4.4858 | 4100 | 0.3275 | 0.7370 | 0.6868 | 0.7110 | 0.9405 | | 0.0775 | 4.5952 | 4200 | 0.3197 | 0.7405 | 0.6997 | 0.7195 | 0.9413 | | 0.0775 | 4.7046 | 4300 | 0.3183 | 0.7419 | 0.6935 | 0.7169 | 0.9415 | | 0.0775 | 4.8140 | 4400 | 0.2961 | 0.7445 | 0.6933 | 0.7180 | 0.9408 | | 0.0771 | 4.9234 | 4500 | 0.3195 | 0.7542 | 0.6986 | 0.7253 | 0.9426 | | 0.0771 | 5.0328 | 4600 | 0.3295 | 0.7637 | 0.7010 | 0.7310 | 0.9435 | | 0.0771 | 5.1422 | 4700 | 0.3204 | 0.7603 | 0.7006 | 0.7293 | 0.9434 | | 0.0771 | 5.2516 | 4800 | 0.2992 | 0.7443 | 0.6995 | 0.7212 | 0.9395 | | 0.0771 | 5.3611 | 4900 | 0.2978 | 0.7312 | 0.7033 | 0.7170 | 0.9393 | | 0.0647 | 5.4705 | 5000 | 0.3324 | 0.7608 | 0.7079 | 0.7334 | 0.9432 | | 0.0647 | 5.5799 | 5100 | 0.3356 | 0.7635 | 0.7038 | 0.7324 | 0.9430 | | 0.0647 | 5.6893 | 5200 | 0.3121 | 0.7634 | 0.7121 | 0.7368 | 0.9430 | | 0.0647 | 5.7987 | 5300 | 0.3392 | 0.7858 | 0.7003 | 0.7406 | 0.9448 | | 0.0647 | 5.9081 | 5400 | 0.2952 | 0.7265 | 0.7220 | 0.7242 | 0.9412 | | 0.0573 | 6.0175 | 5500 | 0.3070 | 0.7311 | 0.7211 | 0.7260 | 0.9429 | | 0.0573 | 6.1269 | 5600 | 0.3207 | 0.7414 | 0.7241 | 0.7326 | 0.9435 | | 0.0573 | 6.2363 | 5700 | 0.3130 | 0.7685 | 0.7231 | 0.7451 | 0.9455 | | 0.0573 | 6.3457 | 5800 | 0.3441 | 0.7752 | 0.7139 | 0.7433 | 0.9447 | | 0.0573 | 6.4551 | 5900 | 0.3196 | 0.7818 | 0.7128 | 0.7457 | 0.9458 | | 0.0529 | 6.5646 | 6000 | 0.3369 | 0.7907 | 0.7164 | 0.7517 | 0.9456 | | 0.0529 | 6.6740 | 6100 | 0.3059 | 0.7394 | 0.7267 | 0.7330 | 0.9435 | | 0.0529 | 6.7834 | 6200 | 0.3043 | 0.7624 | 0.7231 | 0.7422 | 0.9444 | | 0.0529 | 6.8928 | 6300 | 0.3028 | 0.7527 | 0.7252 | 0.7387 | 0.9441 | | 0.0529 | 7.0022 | 6400 | 0.3089 | 0.7596 | 0.7293 | 0.7441 | 0.9457 | | 0.0542 | 7.1116 | 6500 | 0.2927 | 0.7306 | 0.7286 | 0.7296 | 0.9408 | | 0.0542 | 7.2210 | 6600 | 0.3178 | 0.7785 | 0.7274 | 0.7521 | 0.9456 | | 0.0542 | 7.3304 | 6700 | 0.3267 | 0.7653 | 0.7304 | 0.7474 | 0.9450 | | 0.0542 | 7.4398 | 6800 | 0.3254 | 0.7618 | 0.7280 | 0.7445 | 0.9450 | | 0.0542 | 7.5492 | 6900 | 0.3240 | 0.7856 | 0.7254 | 0.7543 | 0.9464 | | 0.0416 | 7.6586 | 7000 | 0.3203 | 0.7682 | 0.7319 | 0.7496 | 0.9463 | | 0.0416 | 7.7681 | 7100 | 0.3176 | 0.7801 | 0.7299 | 0.7542 | 0.9468 | | 0.0416 | 7.8775 | 7200 | 0.3012 | 0.7601 | 0.7355 | 0.7476 | 0.9470 | | 0.0416 | 7.9869 | 7300 | 0.3092 | 0.7336 | 0.7377 | 0.7357 | 0.9436 | | 0.0416 | 8.0963 | 7400 | 0.3025 | 0.7782 | 0.7349 | 0.7559 | 0.9480 | | 0.0422 | 8.2057 | 7500 | 0.3046 | 0.7594 | 0.7340 | 0.7465 | 0.9459 | | 0.0422 | 8.3151 | 7600 | 0.3113 | 0.7640 | 0.7332 | 0.7483 | 0.9458 | | 0.0422 | 8.4245 | 7700 | 0.3002 | 0.7579 | 0.7394 | 0.7485 | 0.9461 | | 0.0422 | 8.5339 | 7800 | 0.3173 | 0.7742 | 0.7321 | 0.7526 | 0.9464 | | 0.0422 | 8.6433 | 7900 | 0.3084 | 0.7766 | 0.7334 | 0.7544 | 0.9467 | | 0.041 | 8.7527 | 8000 | 0.3118 | 0.7829 | 0.7325 | 0.7569 | 0.9477 | | 0.041 | 8.8621 | 8100 | 0.3145 | 0.7788 | 0.7389 | 0.7583 | 0.9473 | | 0.041 | 8.9716 | 8200 | 0.3123 | 0.7788 | 0.7366 | 0.7571 | 0.9480 | | 0.041 | 9.0810 | 8300 | 0.3088 | 0.7754 | 0.7398 | 0.7572 | 0.9476 | | 0.041 | 9.1904 | 8400 | 0.3101 | 0.7804 | 0.7415 | 0.7604 | 0.9491 | | 0.0323 | 9.2998 | 8500 | 0.3152 | 0.7829 | 0.7357 | 0.7785 | 0.9482 | | 0.0323 | 9.4092 | 8600 | 0.3061 | 0.7734 | 0.7398 | 0.7762 | 0.9476 | | 0.0323 | 9.5186 | 8700 | 0.3086 | 0.7636 | 0.7437 | 0.7735 | 0.9476 | | 0.0323 | 9.6280 | 8800 | 0.3162 | 0.7723 | 0.7390 | 0.7553 | 0.9476 | | 0.0323 | 9.7374 | 8900 | 0.3070 | 0.7605 | 0.7419 | 0.7811 | 0.9467 | | 0.0357 | 9.8468 | 9000 | 0.3117 | 0.7824 | 0.7396 | 0.7804 | 0.9481 | | 0.0357 | 9.9562 | 9100 | 0.3130 | 0.7750 | 0.7396 | 0.7869 | 0.9472 | | 0.0357 | 10.0656 | 9200 | 0.3095 | 0.7673 | 0.7405 | 0.7837 | 0.9476 | | 0.0357 | 10.1751 | 9300 | 0.3179 | 0.7868 | 0.7357 | 0.7804 | 0.9477 | | 0.0357 | 10.2845 | 9400 | 0.3077 | 0.7645 | 0.7405 | 0.7823 | 0.9472 | | 0.0359 | 10.3939 | 9500 | 0.3128 | 0.7798 | 0.7366 | 0.7876 | 0.9476 | | 0.0359 | 10.5033 | 9600 | 0.3151 | 0.7784 | 0.7377 | 0.7875 | 0.9475 | | 0.0359 | 10.6127 | 9700 | 0.3138 | 0.7744 | 0.7420 | 0.7879 | 0.9478 | | 0.0359 | 10.7221 | 9800 | 0.3115 | 0.7688 | 0.7415 | 0.7849 | 0.9475 | | 0.0359 | 10.8315 | 9900 | 0.3097 | 0.7673 | 0.7411 | 0.7840 | 0.9472 | | 0.0301 | 10.9409 | 10000 | 0.3095 | 0.7674 | 0.7409 | 0.7989 | 0.9474 | ### Framework versions - Transformers 4.41.0.dev0 - Pytorch 2.2.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1