JunxiongWang
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,67 +1,27 @@
|
|
1 |
---
|
2 |
-
license:
|
3 |
-
base_model: meta-llama/Llama-3.2-3B-Instruct
|
4 |
-
tags:
|
5 |
-
- alignment-handbook
|
6 |
-
- generated_from_trainer
|
7 |
-
datasets:
|
8 |
-
- JunxiongWang/sftdatasetv3
|
9 |
-
model-index:
|
10 |
-
- name: Llama-Mamba-3.2-3B-teacher-Llama-3.1-70B-Instruct-kl1.0-ce0.0-update
|
11 |
-
results: []
|
12 |
---
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
### Training hyperparameters
|
39 |
-
|
40 |
-
The following hyperparameters were used during training:
|
41 |
-
- learning_rate: 2e-05
|
42 |
-
- train_batch_size: 4
|
43 |
-
- eval_batch_size: 4
|
44 |
-
- seed: 42
|
45 |
-
- distributed_type: multi-GPU
|
46 |
-
- num_devices: 8
|
47 |
-
- gradient_accumulation_steps: 2
|
48 |
-
- total_train_batch_size: 64
|
49 |
-
- total_eval_batch_size: 32
|
50 |
-
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
-
- lr_scheduler_type: cosine
|
52 |
-
- lr_scheduler_warmup_ratio: 0.01
|
53 |
-
- num_epochs: 1
|
54 |
-
|
55 |
-
### Training results
|
56 |
-
|
57 |
-
| Training Loss | Epoch | Step | Validation Loss |
|
58 |
-
|:-------------:|:------:|:-----:|:---------------:|
|
59 |
-
| 329.7069 | 1.0000 | 51995 | 375.7168 |
|
60 |
-
|
61 |
-
|
62 |
-
### Framework versions
|
63 |
-
|
64 |
-
- Transformers 4.43.1
|
65 |
-
- Pytorch 2.1.1+cu118
|
66 |
-
- Datasets 3.1.0
|
67 |
-
- Tokenizers 0.19.1
|
|
|
1 |
---
|
2 |
+
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
4 |
|
5 |
+
Zero-shot results when using the [Llama-3.1-70B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct) as the teacher model, and the [Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) as the initialized model
|
6 |
+
|
7 |
+
| Task | Llama-3.2-3B-Instruct | Llama3.2-Mamba-3B-distill |
|
8 |
+
|---------------|------------------------|--------------------------|
|
9 |
+
| arc_challenge | 0.459 | 0.4838 |
|
10 |
+
| arc_easy | 0.7407 | 0.7765 |
|
11 |
+
| hellaswag | 0.7043 | 0.7037 |
|
12 |
+
| mmlu | 0.6043 | 0.5448 |
|
13 |
+
| openbookqa | 0.36 | 0.394 |
|
14 |
+
| piqa | 0.7568 | 0.7731 |
|
15 |
+
| pubmedqa | 0.696 | 0.664 |
|
16 |
+
| race | 0.4067 | 0.4029 |
|
17 |
+
| winogrande | 0.6748 | 0.6732 |
|
18 |
+
|
19 |
+
|
20 |
+
```
|
21 |
+
@article{junxiongdaniele2024mambainllama,
|
22 |
+
title = {The Mamba in the Llama: Distilling and Accelerating Hybrid Models},
|
23 |
+
author = {Junxiong Wang and Daniele Paliotta and Avner May and Alexander M. Rush and Tri Dao},
|
24 |
+
journal = {arXiv preprint arXiv:2408.15237},
|
25 |
+
year = {2024}
|
26 |
+
}
|
27 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|