--- base_model: llm-jp/llm-jp-3-13b license: apache-2.0 language: - ja datasets: - kajuma/dpo_1 --- # Model Card for JunichiroMorita/llm-jp-3-13b-it_lora_20241216 ## Model Details - **Developed by:** JunichiroMorita - **Language(s) (NLP):** Japanese - **License:** Apache license 2.0 - **Finetuned from model :** llm-jp/llm-jp-3-13b ## Description This model was developed for use in a competition, specifically for [松尾研大規模言語モデル講座2024](https://weblab.t.u-tokyo.ac.jp/lecture/course-list/large-language-model/). ## Uses ```python !pip install unsloth !pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git" !pip install -U torch !pip install -U peft ``` ```python from unsloth import FastLanguageModel from peft import PeftModel import torch import json from tqdm import tqdm import re model_id = "llm-jp/llm-jp-3-13b" adapter_id = f"JunichiroMorita/llm-jp-3-13b-it_lora_20241216" HF_TOKEN = 'your_hugging_face_token' dtype = None load_in_4bit = True model, tokenizer = FastLanguageModel.from_pretrained( model_name=model_id, dtype=dtype, load_in_4bit=load_in_4bit, trust_remote_code=True, ) model = PeftModel.from_pretrained(model, adapter_id, token=HF_TOKEN) datasets = [] with open("./elyza-tasks-100-TV_0.jsonl", "r") as f: item = "" for line in f: line = line.strip() item += line if item.endswith("}"): datasets.append(json.loads(item)) item = "" FastLanguageModel.for_inference(model) results = [] for dt in tqdm(datasets): input = dt["input"] prompt = f"""### 指示\n{input}\n\n### 回答\n""" inputs = tokenizer([prompt], return_tensors = "pt").to(model.device) outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2) prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答\n')[-1] results.append({"task_id": dt["task_id"], "input": input, "output": prediction}) with open(f'./llm-jp-3-13b-it_lora_20241216_output.jsonl', 'w', encoding='utf-8') as f: for result in results: json.dump(result, f, ensure_ascii=False) f.write('\n') ``` ## Training Details ### Training Data - [kajuma/dpo_1](https://huggingface.co./datasets/kajuma/dpo_1) ### Training Procedure This model was fine-tuned using LoRA (Low-Rank Adaptation) to optimize training efficiency and minimize computational overhead while maintaining performance. The fine-tuning process utilized Japanese instruction data specifically designed for LLMs to enhance its capabilities in understanding and generating Japanese-language instructions. This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [](https://github.com/unslothai/unsloth)