--- language: - kr license: apache-2.0 tags: - generated_from_trainer datasets: - Jungwonchang/ksponspeech_partial metrics: - wer base_model: openai/whisper-large-v2 model-index: - name: Whisper large-v2, KsponSpeech Partial 10 epochs results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: KsponSpeech type: Jungwonchang/ksponspeech_partial config: eval split: test args: eval metrics: - type: wer value: 25.714073744343054 name: Wer - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Jungwonchang/ksponspeech type: Jungwonchang/ksponspeech config: eval split: test metrics: - type: wer value: 25.54 name: WER --- # Whisper large-v2, KsponSpeech Partial 10 epochs This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co./openai/whisper-large-v2) on the KsponSpeech dataset. It achieves the following results on the evaluation set: - Loss: 0.0194 - Wer: 25.7141 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 300 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.2225 | 1.15 | 100 | 0.1394 | 27.9769 | | 0.0507 | 3.11 | 200 | 0.0449 | 14.9640 | | 0.0114 | 5.07 | 300 | 0.0194 | 25.7141 | ### Framework versions - Transformers 4.31.0 - Pytorch 1.12.1+cu116 - Datasets 2.14.0 - Tokenizers 0.12.1