upload llama-265m model checkpoint
Browse files- README.md +1 -0
- config.json +56 -0
- configuration_llama_moe.py +124 -0
- generation_config.json +7 -0
- modeling_llama_moe_hf.py +1681 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +23 -0
- tokenizer.model +3 -0
- tokenizer_config.json +34 -0
- trainer_state.json +3565 -0
- training_args.bin +3 -0
README.md
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
|
config.json
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "./LLaMA_MoE_v1_3_5B_2_8/",
|
3 |
+
"add_weight_norm": false,
|
4 |
+
"architectures": [
|
5 |
+
"LlamaMoEForCausalLM"
|
6 |
+
],
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "configuration_llama_moe.LlamaMoEConfig",
|
9 |
+
"AutoModel": "modeling_llama_moe_hf.LlamaMoEModel",
|
10 |
+
"AutoModelForCausalLM": "modeling_llama_moe_hf.LlamaMoEForCausalLM"
|
11 |
+
},
|
12 |
+
"bos_token_id": 0,
|
13 |
+
"calculator_type": "UniversalCalculator",
|
14 |
+
"capacity_factor": 1.25,
|
15 |
+
"drop_tokens": true,
|
16 |
+
"dropped_padding": "zero",
|
17 |
+
"eos_token_id": 2,
|
18 |
+
"gate_add_noise": true,
|
19 |
+
"gate_balance_loss_weight": 0.01,
|
20 |
+
"gate_network": "mlp",
|
21 |
+
"gate_noise_epsilon": 0.01,
|
22 |
+
"gate_type": "TopKBalancedNoisyGate",
|
23 |
+
"gate_use_balance": true,
|
24 |
+
"gate_use_softmax": true,
|
25 |
+
"gates": "mlp",
|
26 |
+
"hidden_act": "silu",
|
27 |
+
"hidden_size": 2048,
|
28 |
+
"initializer_range": 0.02,
|
29 |
+
"intermediate_size": 8192,
|
30 |
+
"max_position_embeddings": 2048,
|
31 |
+
"model_type": "llama_moe",
|
32 |
+
"multiply_gate_scores": true,
|
33 |
+
"num_attention_heads": 16,
|
34 |
+
"num_experts": 1,
|
35 |
+
"num_hidden_layers": 2,
|
36 |
+
"num_key_value_heads": 16,
|
37 |
+
"num_selects": 1,
|
38 |
+
"pad_token_id": 1,
|
39 |
+
"pretraining_tp": 1,
|
40 |
+
"rms_norm_eps": 1e-05,
|
41 |
+
"rope_scaling": null,
|
42 |
+
"score_scale_factor": 4.0,
|
43 |
+
"size_experts": [
|
44 |
+
[
|
45 |
+
8192
|
46 |
+
],
|
47 |
+
[
|
48 |
+
8192
|
49 |
+
]
|
50 |
+
],
|
51 |
+
"tie_word_embeddings": false,
|
52 |
+
"torch_dtype": "float32",
|
53 |
+
"transformers_version": "4.30.2",
|
54 |
+
"use_cache": true,
|
55 |
+
"vocab_size": 32000
|
56 |
+
}
|
configuration_llama_moe.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers.configuration_utils import PretrainedConfig
|
2 |
+
|
3 |
+
|
4 |
+
class LlamaMoEConfig(PretrainedConfig):
|
5 |
+
model_type = "llama_moe"
|
6 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
7 |
+
|
8 |
+
def __init__(
|
9 |
+
self,
|
10 |
+
vocab_size=32000,
|
11 |
+
hidden_size=4096,
|
12 |
+
intermediate_size=11008,
|
13 |
+
num_hidden_layers=32,
|
14 |
+
num_attention_heads=32,
|
15 |
+
num_key_value_heads=None,
|
16 |
+
hidden_act="silu",
|
17 |
+
max_position_embeddings=2048,
|
18 |
+
initializer_range=0.02,
|
19 |
+
rms_norm_eps=1e-6,
|
20 |
+
use_cache=True,
|
21 |
+
pad_token_id=0,
|
22 |
+
bos_token_id=1,
|
23 |
+
eos_token_id=2,
|
24 |
+
pretraining_tp=1,
|
25 |
+
tie_word_embeddings=False,
|
26 |
+
rope_scaling=None,
|
27 |
+
# -------- moe expert configs --------
|
28 |
+
num_experts=16,
|
29 |
+
num_selects=4,
|
30 |
+
size_experts=None,
|
31 |
+
# -------- moe gate configs --------
|
32 |
+
gate_type="TopKBalancedNoisyGate",
|
33 |
+
gate_network="mlp",
|
34 |
+
gate_use_softmax=True,
|
35 |
+
gate_use_balance=True,
|
36 |
+
gate_balance_loss_weight=1e-2,
|
37 |
+
gate_add_noise=True,
|
38 |
+
# TopKBalancedNoisyGate
|
39 |
+
gate_noise_epsilon=1e-2,
|
40 |
+
# -------- moe calculator configs --------
|
41 |
+
calculator_type="UniversalCalculator",
|
42 |
+
multiply_gate_scores=True,
|
43 |
+
score_scale_factor=1.0,
|
44 |
+
add_weight_norm=False,
|
45 |
+
# SwitchDropTokenCalculator
|
46 |
+
drop_tokens=True,
|
47 |
+
dropped_padding="zero",
|
48 |
+
capacity_factor=1.25,
|
49 |
+
**kwargs,
|
50 |
+
):
|
51 |
+
self.vocab_size = vocab_size
|
52 |
+
self.max_position_embeddings = max_position_embeddings
|
53 |
+
self.hidden_size = hidden_size
|
54 |
+
self.intermediate_size = intermediate_size
|
55 |
+
self.num_hidden_layers = num_hidden_layers
|
56 |
+
self.num_attention_heads = num_attention_heads
|
57 |
+
self.hidden_act = hidden_act
|
58 |
+
self.initializer_range = initializer_range
|
59 |
+
self.rms_norm_eps = rms_norm_eps
|
60 |
+
self.pretraining_tp = pretraining_tp
|
61 |
+
self.use_cache = use_cache
|
62 |
+
self.rope_scaling = rope_scaling
|
63 |
+
self._rope_scaling_validation()
|
64 |
+
|
65 |
+
self.num_experts = num_experts
|
66 |
+
self.num_selects = num_selects
|
67 |
+
self.size_experts = size_experts
|
68 |
+
|
69 |
+
self.gate_type = gate_type
|
70 |
+
self.gate_network = gate_network
|
71 |
+
self.gate_use_softmax = gate_use_softmax
|
72 |
+
self.gate_use_balance = gate_use_balance
|
73 |
+
self.gate_balance_loss_weight = gate_balance_loss_weight
|
74 |
+
self.gate_add_noise = gate_add_noise
|
75 |
+
self.gate_noise_epsilon = gate_noise_epsilon
|
76 |
+
|
77 |
+
self.calculator_type = calculator_type
|
78 |
+
self.multiply_gate_scores = multiply_gate_scores
|
79 |
+
self.score_scale_factor = score_scale_factor
|
80 |
+
self.add_weight_norm = add_weight_norm
|
81 |
+
self.drop_tokens = drop_tokens
|
82 |
+
self.dropped_padding = dropped_padding
|
83 |
+
self.capacity_factor = capacity_factor
|
84 |
+
|
85 |
+
# for backward compatibility
|
86 |
+
if num_key_value_heads is None:
|
87 |
+
num_key_value_heads = num_attention_heads
|
88 |
+
|
89 |
+
self.num_key_value_heads = num_key_value_heads
|
90 |
+
|
91 |
+
super().__init__(
|
92 |
+
pad_token_id=pad_token_id,
|
93 |
+
bos_token_id=bos_token_id,
|
94 |
+
eos_token_id=eos_token_id,
|
95 |
+
tie_word_embeddings=tie_word_embeddings,
|
96 |
+
**kwargs,
|
97 |
+
)
|
98 |
+
|
99 |
+
def _rope_scaling_validation(self):
|
100 |
+
"""
|
101 |
+
Validate the `rope_scaling` configuration.
|
102 |
+
"""
|
103 |
+
if self.rope_scaling is None:
|
104 |
+
return
|
105 |
+
|
106 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
107 |
+
raise ValueError(
|
108 |
+
"`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, "
|
109 |
+
f"got {self.rope_scaling}"
|
110 |
+
)
|
111 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
112 |
+
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
113 |
+
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
114 |
+
raise ValueError(
|
115 |
+
f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
116 |
+
)
|
117 |
+
if (
|
118 |
+
rope_scaling_factor is None
|
119 |
+
or not isinstance(rope_scaling_factor, float)
|
120 |
+
or rope_scaling_factor <= 1.0
|
121 |
+
):
|
122 |
+
raise ValueError(
|
123 |
+
f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}"
|
124 |
+
)
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 0,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"pad_token_id": 1,
|
6 |
+
"transformers_version": "4.30.2"
|
7 |
+
}
|
modeling_llama_moe_hf.py
ADDED
@@ -0,0 +1,1681 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
import math
|
3 |
+
import warnings
|
4 |
+
from dataclasses import dataclass
|
5 |
+
from typing import Optional, Tuple
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.utils.checkpoint
|
9 |
+
import torch.nn as nn
|
10 |
+
import torch.nn.functional as F
|
11 |
+
from torch.distributions.normal import Normal
|
12 |
+
from transformers.modeling_outputs import (
|
13 |
+
CausalLMOutputWithPast,
|
14 |
+
)
|
15 |
+
from transformers.modeling_utils import PreTrainedModel
|
16 |
+
from transformers.activations import ACT2FN
|
17 |
+
from transformers.utils import ModelOutput, logging
|
18 |
+
|
19 |
+
from .configuration_llama_moe import LlamaMoEConfig
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
_CONFIG_FOR_DOC = "LlamaMoEConfig"
|
24 |
+
|
25 |
+
|
26 |
+
@dataclass
|
27 |
+
class CalculatorOutput(ModelOutput):
|
28 |
+
hidden_states: Optional[torch.FloatTensor] = None
|
29 |
+
num_dropped_tokens: Optional[int] = None
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class BaseMoEModelOutputWithPast(ModelOutput):
|
34 |
+
"""
|
35 |
+
Args:
|
36 |
+
num_dropped_tokens: layer idx to the number of dropped tokens
|
37 |
+
"""
|
38 |
+
|
39 |
+
last_hidden_state: torch.FloatTensor = None
|
40 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
41 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
42 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
43 |
+
balance_loss: Optional[float] = None
|
44 |
+
num_dropped_tokens: Optional[Tuple[torch.Tensor]] = None
|
45 |
+
gate_load: Optional[Tuple[list]] = None
|
46 |
+
gate_importance: Optional[Tuple[list]] = None
|
47 |
+
|
48 |
+
|
49 |
+
|
50 |
+
@dataclass
|
51 |
+
class MoECausalLMOutputWithPast(CausalLMOutputWithPast):
|
52 |
+
pass
|
53 |
+
#balance_loss: Optional[float] = None
|
54 |
+
#num_dropped_tokens: Optional[Tuple[int]] = None
|
55 |
+
#gate_load: Optional[Tuple[ list[torch.Tensor]]] = None
|
56 |
+
#gate_importance: Optional[Tuple[ list[torch.Tensor]]] = None
|
57 |
+
|
58 |
+
|
59 |
+
|
60 |
+
@dataclass
|
61 |
+
class MoEMlpOutput(ModelOutput):
|
62 |
+
hidden_states: Optional[torch.FloatTensor] = None
|
63 |
+
balance_loss: Optional[torch.FloatTensor] = None
|
64 |
+
num_dropped_tokens: Optional[int] = None
|
65 |
+
gate_load: Optional[list] = None
|
66 |
+
gate_importance: Optional[list] = None
|
67 |
+
|
68 |
+
|
69 |
+
def _make_causal_mask(
|
70 |
+
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
|
71 |
+
):
|
72 |
+
"""
|
73 |
+
Make causal mask used for bi-directional self-attention.
|
74 |
+
"""
|
75 |
+
bsz, tgt_len = input_ids_shape
|
76 |
+
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
|
77 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
78 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
79 |
+
mask = mask.to(dtype)
|
80 |
+
|
81 |
+
if past_key_values_length > 0:
|
82 |
+
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
83 |
+
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
84 |
+
|
85 |
+
|
86 |
+
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
87 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
88 |
+
"""
|
89 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
90 |
+
"""
|
91 |
+
bsz, src_len = mask.size()
|
92 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
93 |
+
|
94 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
95 |
+
|
96 |
+
inverted_mask = 1.0 - expanded_mask
|
97 |
+
|
98 |
+
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
99 |
+
|
100 |
+
|
101 |
+
class LlamaRMSNorm(nn.Module):
|
102 |
+
def __init__(self, hidden_size, eps=1e-6):
|
103 |
+
"""
|
104 |
+
LlamaRMSNorm is equivalent to T5LayerNorm
|
105 |
+
"""
|
106 |
+
super().__init__()
|
107 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
108 |
+
self.variance_epsilon = eps
|
109 |
+
|
110 |
+
def forward(self, hidden_states):
|
111 |
+
input_dtype = hidden_states.dtype
|
112 |
+
hidden_states = hidden_states.to(torch.float32)
|
113 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
114 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
115 |
+
return self.weight * hidden_states.to(input_dtype)
|
116 |
+
|
117 |
+
|
118 |
+
class LlamaRotaryEmbedding(torch.nn.Module):
|
119 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
120 |
+
super().__init__()
|
121 |
+
|
122 |
+
self.dim = dim
|
123 |
+
self.max_position_embeddings = max_position_embeddings
|
124 |
+
self.base = base
|
125 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
126 |
+
self.register_buffer("inv_freq", inv_freq)
|
127 |
+
|
128 |
+
# Build here to make `torch.jit.trace` work.
|
129 |
+
self._set_cos_sin_cache(
|
130 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
131 |
+
)
|
132 |
+
|
133 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
134 |
+
self.max_seq_len_cached = seq_len
|
135 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
136 |
+
|
137 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
138 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
139 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
140 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
|
141 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
142 |
+
|
143 |
+
def forward(self, x, seq_len=None):
|
144 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
145 |
+
if seq_len > self.max_seq_len_cached:
|
146 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
147 |
+
|
148 |
+
return (
|
149 |
+
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
150 |
+
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
151 |
+
)
|
152 |
+
|
153 |
+
|
154 |
+
class LlamaLinearScalingRotaryEmbedding(LlamaRotaryEmbedding):
|
155 |
+
"""LlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
156 |
+
|
157 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
158 |
+
self.scaling_factor = scaling_factor
|
159 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
160 |
+
|
161 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
162 |
+
self.max_seq_len_cached = seq_len
|
163 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
164 |
+
t = t / self.scaling_factor
|
165 |
+
|
166 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
167 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
168 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
169 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
|
170 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
171 |
+
|
172 |
+
|
173 |
+
class LlamaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding):
|
174 |
+
"""LlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
175 |
+
|
176 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
177 |
+
self.scaling_factor = scaling_factor
|
178 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
179 |
+
|
180 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
181 |
+
self.max_seq_len_cached = seq_len
|
182 |
+
|
183 |
+
if seq_len > self.max_position_embeddings:
|
184 |
+
base = self.base * (
|
185 |
+
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
|
186 |
+
) ** (self.dim / (self.dim - 2))
|
187 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
188 |
+
self.register_buffer("inv_freq", inv_freq)
|
189 |
+
|
190 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
191 |
+
|
192 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
193 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
194 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
195 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
|
196 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
197 |
+
|
198 |
+
|
199 |
+
def rotate_half(x):
|
200 |
+
"""Rotates half the hidden dims of the input."""
|
201 |
+
x1 = x[..., : x.shape[-1] // 2]
|
202 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
203 |
+
return torch.cat((-x2, x1), dim=-1)
|
204 |
+
|
205 |
+
|
206 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
|
207 |
+
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
|
208 |
+
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
|
209 |
+
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
|
210 |
+
cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
211 |
+
sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
212 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
213 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
214 |
+
return q_embed, k_embed
|
215 |
+
|
216 |
+
|
217 |
+
class LlamaMLP(nn.Module):
|
218 |
+
def __init__(self, config):
|
219 |
+
super().__init__()
|
220 |
+
self.pretraining_tp = config.pretraining_tp
|
221 |
+
self.hidden_size = config.hidden_size
|
222 |
+
self.intermediate_size = config.intermediate_size
|
223 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
224 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
225 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
226 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
227 |
+
|
228 |
+
def forward(self, x):
|
229 |
+
if self.pretraining_tp > 1:
|
230 |
+
slice = self.intermediate_size // self.pretraining_tp
|
231 |
+
gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
|
232 |
+
up_proj_slices = self.up_proj.weight.split(slice, dim=0)
|
233 |
+
down_proj_slices = self.down_proj.weight.split(slice, dim=1)
|
234 |
+
|
235 |
+
gate_proj = torch.cat([F.linear(x, gate_proj_slices[i]) for i in range(self.pretraining_tp)], dim=-1)
|
236 |
+
up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.pretraining_tp)], dim=-1)
|
237 |
+
|
238 |
+
intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
|
239 |
+
down_proj = [F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.pretraining_tp)]
|
240 |
+
down_proj = sum(down_proj)
|
241 |
+
else:
|
242 |
+
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
243 |
+
|
244 |
+
return down_proj
|
245 |
+
|
246 |
+
|
247 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
248 |
+
"""
|
249 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
250 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
251 |
+
"""
|
252 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
253 |
+
if n_rep == 1:
|
254 |
+
return hidden_states
|
255 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
256 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
257 |
+
|
258 |
+
|
259 |
+
class LlamaAttention(nn.Module):
|
260 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
261 |
+
|
262 |
+
def __init__(self, config: LlamaMoEConfig):
|
263 |
+
super().__init__()
|
264 |
+
self.config = config
|
265 |
+
self.hidden_size = config.hidden_size
|
266 |
+
self.num_heads = config.num_attention_heads
|
267 |
+
self.head_dim = self.hidden_size // self.num_heads
|
268 |
+
self.num_key_value_heads = config.num_key_value_heads
|
269 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
270 |
+
self.pretraining_tp = config.pretraining_tp
|
271 |
+
self.max_position_embeddings = config.max_position_embeddings
|
272 |
+
|
273 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
274 |
+
raise ValueError(
|
275 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
276 |
+
f" and `num_heads`: {self.num_heads})."
|
277 |
+
)
|
278 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
279 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
280 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
281 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
282 |
+
self._init_rope()
|
283 |
+
|
284 |
+
def _init_rope(self):
|
285 |
+
if self.config.rope_scaling is None:
|
286 |
+
self.rotary_emb = LlamaRotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings)
|
287 |
+
else:
|
288 |
+
scaling_type = self.config.rope_scaling["type"]
|
289 |
+
scaling_factor = self.config.rope_scaling["factor"]
|
290 |
+
if scaling_type == "linear":
|
291 |
+
self.rotary_emb = LlamaLinearScalingRotaryEmbedding(
|
292 |
+
self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor
|
293 |
+
)
|
294 |
+
elif scaling_type == "dynamic":
|
295 |
+
self.rotary_emb = LlamaDynamicNTKScalingRotaryEmbedding(
|
296 |
+
self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor
|
297 |
+
)
|
298 |
+
else:
|
299 |
+
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
300 |
+
|
301 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
302 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
303 |
+
|
304 |
+
def forward(
|
305 |
+
self,
|
306 |
+
hidden_states: torch.Tensor,
|
307 |
+
attention_mask: Optional[torch.Tensor] = None,
|
308 |
+
position_ids: Optional[torch.LongTensor] = None,
|
309 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
310 |
+
output_attentions: bool = False,
|
311 |
+
use_cache: bool = False,
|
312 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
313 |
+
bsz, q_len, _ = hidden_states.size()
|
314 |
+
|
315 |
+
if self.pretraining_tp > 1:
|
316 |
+
key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.pretraining_tp
|
317 |
+
query_slices = self.q_proj.weight.split((self.num_heads * self.head_dim) // self.pretraining_tp, dim=0)
|
318 |
+
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
|
319 |
+
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
|
320 |
+
|
321 |
+
query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.pretraining_tp)]
|
322 |
+
query_states = torch.cat(query_states, dim=-1)
|
323 |
+
|
324 |
+
key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.pretraining_tp)]
|
325 |
+
key_states = torch.cat(key_states, dim=-1)
|
326 |
+
|
327 |
+
value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.pretraining_tp)]
|
328 |
+
value_states = torch.cat(value_states, dim=-1)
|
329 |
+
|
330 |
+
else:
|
331 |
+
query_states = self.q_proj(hidden_states)
|
332 |
+
key_states = self.k_proj(hidden_states)
|
333 |
+
value_states = self.v_proj(hidden_states)
|
334 |
+
|
335 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
336 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
337 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
338 |
+
|
339 |
+
kv_seq_len = key_states.shape[-2]
|
340 |
+
if past_key_value is not None:
|
341 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
342 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
343 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
344 |
+
|
345 |
+
if past_key_value is not None:
|
346 |
+
# reuse k, v, self_attention
|
347 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
348 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
349 |
+
|
350 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
351 |
+
|
352 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
353 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
354 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
355 |
+
|
356 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
357 |
+
|
358 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
359 |
+
raise ValueError(
|
360 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
361 |
+
f" {attn_weights.size()}"
|
362 |
+
)
|
363 |
+
|
364 |
+
if attention_mask is not None:
|
365 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
366 |
+
raise ValueError(
|
367 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
368 |
+
)
|
369 |
+
attn_weights = attn_weights + attention_mask
|
370 |
+
|
371 |
+
# upcast attention to fp32
|
372 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
373 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
374 |
+
|
375 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
376 |
+
raise ValueError(
|
377 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
378 |
+
f" {attn_output.size()}"
|
379 |
+
)
|
380 |
+
|
381 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
382 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
383 |
+
|
384 |
+
if self.pretraining_tp > 1:
|
385 |
+
attn_output = attn_output.split(self.hidden_size // self.pretraining_tp, dim=2)
|
386 |
+
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.pretraining_tp, dim=1)
|
387 |
+
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.pretraining_tp)])
|
388 |
+
else:
|
389 |
+
attn_output = self.o_proj(attn_output)
|
390 |
+
|
391 |
+
if not output_attentions:
|
392 |
+
attn_weights = None
|
393 |
+
|
394 |
+
return attn_output, attn_weights, past_key_value
|
395 |
+
|
396 |
+
|
397 |
+
class TopKBalancedNoisyGate(nn.Module):
|
398 |
+
def __init__(
|
399 |
+
self,
|
400 |
+
input_size,
|
401 |
+
num_experts,
|
402 |
+
num_selects,
|
403 |
+
gate_network="mlp",
|
404 |
+
use_softmax=True,
|
405 |
+
use_balance=True,
|
406 |
+
balance_loss_weight=1e-2,
|
407 |
+
add_noise=True,
|
408 |
+
noise_epsilon=1e-2,
|
409 |
+
):
|
410 |
+
super(TopKBalancedNoisyGate, self).__init__()
|
411 |
+
assert num_selects <= num_experts
|
412 |
+
self.input_size = input_size
|
413 |
+
self.num_experts = num_experts
|
414 |
+
self.num_selects = num_selects
|
415 |
+
|
416 |
+
self.gate_network_type = gate_network
|
417 |
+
self.gate_network = self.get_gate_network(gate_network, input_size, num_experts)
|
418 |
+
|
419 |
+
self.use_softmax = use_softmax
|
420 |
+
self.softmax = nn.Softmax(1)
|
421 |
+
|
422 |
+
self.use_balance = use_balance
|
423 |
+
self.balance_loss_weight = balance_loss_weight
|
424 |
+
|
425 |
+
# add_noise
|
426 |
+
self.add_noise = add_noise
|
427 |
+
self.noise_epsilon = noise_epsilon
|
428 |
+
self.warned = False
|
429 |
+
if self.add_noise:
|
430 |
+
self.weight_noise = nn.Linear(input_size, num_experts, bias=False)
|
431 |
+
self.weight_noise.weight.data = torch.zeros(
|
432 |
+
(num_experts, input_size),
|
433 |
+
requires_grad=True,
|
434 |
+
device=self.weight_noise.weight.data.device,
|
435 |
+
dtype=self.weight_noise.weight.data.dtype,
|
436 |
+
)
|
437 |
+
self.mean = 0.0
|
438 |
+
self.std = 1.0
|
439 |
+
self.normal = Normal(self.mean, self.std)
|
440 |
+
self.softplus = nn.Softplus()
|
441 |
+
|
442 |
+
self.reset_parameters()
|
443 |
+
|
444 |
+
def get_gate_network(self, gate_type, input_size, num_experts):
|
445 |
+
gate_type = gate_type.lower()
|
446 |
+
|
447 |
+
if gate_type == "linear":
|
448 |
+
gate_network = nn.Linear(input_size, num_experts, bias=False)
|
449 |
+
nn.init.zeros_(gate_network.weight)
|
450 |
+
elif gate_type == "mlp":
|
451 |
+
gate_network = torch.nn.Sequential(
|
452 |
+
torch.nn.Linear(input_size, num_experts, bias=False),
|
453 |
+
torch.nn.Tanh(),
|
454 |
+
torch.nn.Linear(num_experts, num_experts, bias=False),
|
455 |
+
)
|
456 |
+
else:
|
457 |
+
raise ValueError(f'Unexpected gate_type: {gate_type}.')
|
458 |
+
|
459 |
+
return gate_network
|
460 |
+
|
461 |
+
def reset_gate_network(self):
|
462 |
+
if "gate_network_type" not in vars(self):
|
463 |
+
raise KeyError(f"{type(self)} does not have a gate network.")
|
464 |
+
else:
|
465 |
+
self.gate_network = self.get_gate_network(
|
466 |
+
self.gate_network_type, self.input_size, self.num_experts
|
467 |
+
)
|
468 |
+
|
469 |
+
def reset_parameters(self):
|
470 |
+
if self.add_noise:
|
471 |
+
nn.init.zeros_(self.weight_noise.weight)
|
472 |
+
# nn.init.zeros_(self.weight_noise)
|
473 |
+
|
474 |
+
def cv_squared(self, x, eps=1e-10):
|
475 |
+
"""The squared coefficient of variation of a sample.
|
476 |
+
Useful as a loss to encourage a positive distribution to be more uniform.
|
477 |
+
Epsilons added for numerical stability.
|
478 |
+
Returns 0 for an empty Tensor.
|
479 |
+
Args:
|
480 |
+
x: a `Tensor`.
|
481 |
+
Returns:
|
482 |
+
a `Scalar`.s
|
483 |
+
"""
|
484 |
+
if x.shape[0] == 1:
|
485 |
+
return torch.tensor(0.0, device=x.device)
|
486 |
+
return x.float().var() / (x.float().mean() ** 2 + eps)
|
487 |
+
|
488 |
+
def forward(self, x):
|
489 |
+
logits_gate = self.gate_network(x)
|
490 |
+
if self.training and self.add_noise:
|
491 |
+
noise_mm = self.weight_noise(x)
|
492 |
+
noise_control = self.softplus(noise_mm) + self.noise_epsilon
|
493 |
+
logits_noise = torch.randn_like(logits_gate) * noise_control
|
494 |
+
logits = logits_gate + logits_noise
|
495 |
+
else:
|
496 |
+
logits = logits_gate
|
497 |
+
|
498 |
+
top_logits, top_indices = logits.topk(min(self.num_selects + 1, self.num_experts), dim=1) # 选择并排序前k+1个权重
|
499 |
+
top_k_logits = top_logits[:, :self.num_selects]
|
500 |
+
top_k_indices = top_indices[:, :self.num_selects]
|
501 |
+
top_k_scores = self.softmax(top_k_logits.to(torch.float32)) if self.use_softmax else top_k_logits
|
502 |
+
top_k_scores = top_k_scores.to(logits.dtype)
|
503 |
+
|
504 |
+
zeros = torch.zeros_like(logits, requires_grad=True, device=logits.device)
|
505 |
+
scores_filtered = zeros.scatter(dim=1, index=top_k_indices, src=top_k_scores) # shape(batch_size, num_experts)
|
506 |
+
importance = scores_filtered.sum(0) # shape(num_experts)
|
507 |
+
|
508 |
+
if self.training:
|
509 |
+
if self.add_noise and self.num_selects != self.num_experts:
|
510 |
+
batch_size = top_logits.size(0)
|
511 |
+
m = top_logits.size(1)
|
512 |
+
top_values_flat = top_logits.flatten()
|
513 |
+
threshold_positions_if_in = torch.arange(batch_size, device=x.device) * m + self.num_selects
|
514 |
+
threshold_if_in = torch.unsqueeze(torch.gather(top_values_flat, 0, threshold_positions_if_in), 1)
|
515 |
+
is_in = torch.gt(logits_noise, threshold_if_in)
|
516 |
+
threshold_positions_if_out = threshold_positions_if_in - 1
|
517 |
+
threshold_if_out = torch.unsqueeze(torch.gather(top_values_flat, 0, threshold_positions_if_out), 1)
|
518 |
+
# is each value currently in the top k.
|
519 |
+
prob_if_in = self.normal.cdf((logits_gate - threshold_if_in) / noise_control)
|
520 |
+
prob_if_out = self.normal.cdf((logits_gate - threshold_if_out) / noise_control)
|
521 |
+
prob = torch.where(is_in, prob_if_in, prob_if_out)
|
522 |
+
load = prob.sum(0)
|
523 |
+
else:
|
524 |
+
load = (scores_filtered > 0).sum(0)
|
525 |
+
if not self.add_noise and not self.warned:
|
526 |
+
warnings.warn('Gradient-trackable implementation for load calculation is only available when "add_noise=True". '
|
527 |
+
'Training without noise will block the gradient from "load" path and lead to inconsistency in optimization objectives.')
|
528 |
+
self.warned = True
|
529 |
+
else:
|
530 |
+
load = (scores_filtered > 0).sum(0)
|
531 |
+
|
532 |
+
if self.use_balance:
|
533 |
+
balance_loss = self.cv_squared(importance) + self.cv_squared(load)
|
534 |
+
balance_loss *= self.balance_loss_weight
|
535 |
+
else:
|
536 |
+
balance_loss = torch.tensor(-100.0, device=x.device)
|
537 |
+
|
538 |
+
return {
|
539 |
+
"topK_indices": top_k_indices,
|
540 |
+
"topK_scores": top_k_scores,
|
541 |
+
"balance_loss": balance_loss,
|
542 |
+
"load": load,
|
543 |
+
"importance": importance,
|
544 |
+
}
|
545 |
+
|
546 |
+
|
547 |
+
class LinearGLUExperts(nn.Module):
|
548 |
+
"""
|
549 |
+
Modified from transformers.models.llama.modeling_llama.LlamaMLP
|
550 |
+
"""
|
551 |
+
|
552 |
+
__constants__ = [
|
553 |
+
"bias",
|
554 |
+
"in_features",
|
555 |
+
"hidden_features",
|
556 |
+
"out_features",
|
557 |
+
"hidden_act",
|
558 |
+
"num_experts",
|
559 |
+
"size_experts",
|
560 |
+
]
|
561 |
+
|
562 |
+
def __init__(
|
563 |
+
self,
|
564 |
+
in_features,
|
565 |
+
hidden_features,
|
566 |
+
out_features,
|
567 |
+
hidden_act,
|
568 |
+
num_experts,
|
569 |
+
size_experts=None,
|
570 |
+
bias=True,
|
571 |
+
device=None,
|
572 |
+
dtype=None,
|
573 |
+
):
|
574 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
575 |
+
super(LinearGLUExperts, self).__init__()
|
576 |
+
self.in_features = in_features
|
577 |
+
self.hidden_features = hidden_features
|
578 |
+
self.out_features = out_features
|
579 |
+
self.hidden_act = hidden_act
|
580 |
+
self.num_experts = num_experts
|
581 |
+
|
582 |
+
if size_experts is None:
|
583 |
+
# all experts share the same number of hidden neurons
|
584 |
+
assert hidden_features % num_experts == 0
|
585 |
+
size_per_expert = hidden_features // num_experts
|
586 |
+
size_experts = [size_per_expert for _ in range(num_experts)]
|
587 |
+
else:
|
588 |
+
# use specified expert sizes
|
589 |
+
assert (
|
590 |
+
len(size_experts) == num_experts
|
591 |
+
and sum(size_experts) == hidden_features
|
592 |
+
)
|
593 |
+
self.size_experts = size_experts
|
594 |
+
|
595 |
+
self.act_fn = ACT2FN[hidden_act]
|
596 |
+
|
597 |
+
self.weight_gate = nn.ParameterList()
|
598 |
+
self.weight_up = nn.ParameterList()
|
599 |
+
self.weight_down = nn.ParameterList()
|
600 |
+
|
601 |
+
for i in range(num_experts):
|
602 |
+
# this matrix will be transposed when performing linear forwarding
|
603 |
+
this_expert_weight_gate = nn.Parameter(
|
604 |
+
torch.empty((size_experts[i], in_features), **factory_kwargs)
|
605 |
+
)
|
606 |
+
# this matrix will be transposed when performing linear forwarding
|
607 |
+
this_expert_weight_up = nn.Parameter(
|
608 |
+
torch.empty((size_experts[i], in_features), **factory_kwargs)
|
609 |
+
)
|
610 |
+
# this matrix will be transposed when performing linear forwarding
|
611 |
+
this_expert_weight_down = nn.Parameter(
|
612 |
+
torch.empty((out_features, size_experts[i]), **factory_kwargs)
|
613 |
+
)
|
614 |
+
self.weight_gate.append(this_expert_weight_gate)
|
615 |
+
self.weight_up.append(this_expert_weight_up)
|
616 |
+
self.weight_down.append(this_expert_weight_down)
|
617 |
+
|
618 |
+
if bias:
|
619 |
+
self.bias_gate = nn.ParameterList()
|
620 |
+
self.bias_up = nn.ParameterList()
|
621 |
+
self.bias_down = nn.ParameterList()
|
622 |
+
|
623 |
+
for i in range(num_experts):
|
624 |
+
this_expert_bias_gate = nn.Parameter(
|
625 |
+
torch.empty((size_experts[i],), **factory_kwargs)
|
626 |
+
)
|
627 |
+
this_expert_bias_up = nn.Parameter(
|
628 |
+
torch.empty((size_experts[i],), **factory_kwargs)
|
629 |
+
)
|
630 |
+
this_expert_bias_down = nn.Parameter(
|
631 |
+
torch.empty((out_features,), **factory_kwargs)
|
632 |
+
)
|
633 |
+
self.bias_gate.append(this_expert_bias_gate)
|
634 |
+
self.bias_up.append(this_expert_bias_up)
|
635 |
+
self.bias_down.append(this_expert_bias_down)
|
636 |
+
else:
|
637 |
+
self.register_parameter("bias_gate", None)
|
638 |
+
self.register_parameter("bias_up", None)
|
639 |
+
self.register_parameter("bias_down", None)
|
640 |
+
|
641 |
+
self.reset_parameters()
|
642 |
+
|
643 |
+
def reset_parameters(self):
|
644 |
+
for i in range(self.num_experts):
|
645 |
+
nn.init.kaiming_uniform_(self.weight_gate[i], a=math.sqrt(5))
|
646 |
+
nn.init.kaiming_uniform_(self.weight_up[i], a=math.sqrt(5))
|
647 |
+
nn.init.kaiming_uniform_(self.weight_down[i], a=math.sqrt(5))
|
648 |
+
if self.bias_gate is not None:
|
649 |
+
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight_gate[i])
|
650 |
+
bound = 1 / math.sqrt(fan_in)
|
651 |
+
nn.init.uniform_(self.bias_gate[i], -bound, bound)
|
652 |
+
if self.bias_up is not None:
|
653 |
+
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight_up[i])
|
654 |
+
bound = 1 / math.sqrt(fan_in)
|
655 |
+
nn.init.uniform_(self.bias_up[i], -bound, bound)
|
656 |
+
if self.bias_down is not None:
|
657 |
+
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight_down[i])
|
658 |
+
bound = 1 / math.sqrt(fan_in)
|
659 |
+
nn.init.uniform_(self.bias_down[i], -bound, bound)
|
660 |
+
|
661 |
+
def forward(self, input, i):
|
662 |
+
gate = self.act_fn(
|
663 |
+
F.linear(
|
664 |
+
input,
|
665 |
+
self.weight_gate[i],
|
666 |
+
self.bias_gate[i] if self.bias_gate is not None else None,
|
667 |
+
)
|
668 |
+
)
|
669 |
+
up = F.linear(
|
670 |
+
input,
|
671 |
+
self.weight_up[i],
|
672 |
+
self.bias_up[i] if self.bias_up is not None else None,
|
673 |
+
)
|
674 |
+
down = F.linear(
|
675 |
+
gate * up,
|
676 |
+
self.weight_down[i],
|
677 |
+
self.bias_down[i] if self.bias_down is not None else None,
|
678 |
+
)
|
679 |
+
return down
|
680 |
+
|
681 |
+
def extra_repr(self):
|
682 |
+
return (
|
683 |
+
"in_features={}, hidden_features={}, out_features={}, hidden_act={},"
|
684 |
+
" num_experts={}, size_experts={}, bias={}".format(
|
685 |
+
self.in_features,
|
686 |
+
self.hidden_features,
|
687 |
+
self.out_features,
|
688 |
+
self.hidden_act,
|
689 |
+
self.num_experts,
|
690 |
+
self.size_experts,
|
691 |
+
self.bias_gate is not None,
|
692 |
+
)
|
693 |
+
)
|
694 |
+
|
695 |
+
|
696 |
+
class UniversalCalculator(nn.Module):
|
697 |
+
def __init__(
|
698 |
+
self,
|
699 |
+
experts: LinearGLUExperts,
|
700 |
+
multiply_gate_scores=True,
|
701 |
+
score_scale_factor=1.0,
|
702 |
+
add_weight_norm: bool = False,
|
703 |
+
):
|
704 |
+
super(UniversalCalculator, self).__init__()
|
705 |
+
self.experts = experts
|
706 |
+
# TODO (zhutong): use vmap to boost the training efficiency
|
707 |
+
# self.experts_vmap = torch.vmap(self.experts)
|
708 |
+
self.multiply_gate_scores = multiply_gate_scores
|
709 |
+
self.score_scale_factor = score_scale_factor
|
710 |
+
self.num_experts = experts.num_experts
|
711 |
+
self.mlp_norm = None
|
712 |
+
if multiply_gate_scores and add_weight_norm:
|
713 |
+
raise NotImplementedError
|
714 |
+
|
715 |
+
def reset_experts(self):
|
716 |
+
self.experts.reset_parameters()
|
717 |
+
|
718 |
+
def forward(
|
719 |
+
self, x, topK_indices, topK_scores, expert_batch_size=None, **kwargs
|
720 |
+
) -> CalculatorOutput:
|
721 |
+
batch_size = topK_indices.size(0) # topK_indices: (bsz*seq_len, num_selects)
|
722 |
+
num_selects = topK_indices.size(1)
|
723 |
+
topK_indices = topK_indices.flatten() # shape(batch_size*num_selects)
|
724 |
+
topK_scores = topK_scores.flatten() # shape(batch_size*num_selects)
|
725 |
+
batch_indices = torch.arange(
|
726 |
+
batch_size, device=topK_scores.device
|
727 |
+
).repeat_interleave(num_selects)
|
728 |
+
|
729 |
+
_, index_sorted_topK_indices = topK_indices.sort(0)
|
730 |
+
|
731 |
+
sorted_topK_scores = topK_scores.index_select(0, index_sorted_topK_indices)
|
732 |
+
sorted_batch_indices = batch_indices.index_select(0, index_sorted_topK_indices)
|
733 |
+
|
734 |
+
if expert_batch_size is None:
|
735 |
+
expert_batch_size = topK_indices.bincount(
|
736 |
+
minlength=self.num_experts
|
737 |
+
).tolist()
|
738 |
+
|
739 |
+
sorted_x = x.index_select(0, sorted_batch_indices)
|
740 |
+
split_x = torch.split(sorted_x, expert_batch_size, dim=0)
|
741 |
+
|
742 |
+
expert_outputs = [
|
743 |
+
self.experts(split_x[i], i)
|
744 |
+
for i in range(self.num_experts)
|
745 |
+
if split_x[i].shape[0] > 0
|
746 |
+
]
|
747 |
+
|
748 |
+
# (bsz*seq_len*num_selects, hidden_size)
|
749 |
+
cat_expert_outputs = torch.cat(expert_outputs, 0)
|
750 |
+
output_dim = cat_expert_outputs.size(1)
|
751 |
+
if self.multiply_gate_scores:
|
752 |
+
if self.mlp_norm is None:
|
753 |
+
cat_expert_outputs = torch.mul(
|
754 |
+
cat_expert_outputs,
|
755 |
+
sorted_topK_scores.reshape(-1, 1) * self.score_scale_factor,
|
756 |
+
)
|
757 |
+
# cat_expert_outputs = torch.mul(cat_expert_outputs, sorted_topK_scores.reshape(-1, 1) * 1.0)
|
758 |
+
else:
|
759 |
+
cat_expert_outputs = torch.mul(
|
760 |
+
cat_expert_outputs, sorted_topK_scores.reshape(-1, 1)
|
761 |
+
)
|
762 |
+
cat_expert_outputs = self.mlp_norm(cat_expert_outputs)
|
763 |
+
|
764 |
+
zeros = torch.zeros(
|
765 |
+
(batch_size, output_dim),
|
766 |
+
device=cat_expert_outputs.device,
|
767 |
+
dtype=cat_expert_outputs.dtype,
|
768 |
+
)
|
769 |
+
y = zeros.index_add(0, sorted_batch_indices, cat_expert_outputs)
|
770 |
+
|
771 |
+
return CalculatorOutput(hidden_states=y, num_dropped_tokens=torch.tensor(-1.0))
|
772 |
+
|
773 |
+
|
774 |
+
class BaseMoELayer(nn.Module):
|
775 |
+
def __init__(self):
|
776 |
+
super(BaseMoELayer, self).__init__()
|
777 |
+
|
778 |
+
self.gate: TopKBalancedNoisyGate
|
779 |
+
self.calculator: UniversalCalculator
|
780 |
+
|
781 |
+
def _create_gate(self, **kwargs):
|
782 |
+
self.gate_type = kwargs.get("gate_type", "TopKBalancedNoisyGate")
|
783 |
+
|
784 |
+
if self.gate_type == "TopKBalancedNoisyGate": # noisy gate
|
785 |
+
self.gate = TopKBalancedNoisyGate(
|
786 |
+
self.input_size,
|
787 |
+
self.num_experts,
|
788 |
+
self.num_selects,
|
789 |
+
gate_network=kwargs.get("gate_network", "mlp"),
|
790 |
+
use_softmax=kwargs.get("gate_use_softmax", True),
|
791 |
+
use_balance=kwargs.get("gate_use_balance", True),
|
792 |
+
balance_loss_weight=kwargs.get("gate_balance_loss_weight", 1e-2),
|
793 |
+
add_noise=kwargs.get("gate_add_noise", True),
|
794 |
+
noise_epsilon=kwargs.get("gate_noise_epsilon", 1e-2),
|
795 |
+
)
|
796 |
+
else:
|
797 |
+
raise NotImplementedError
|
798 |
+
|
799 |
+
def _create_calculator(self, experts, **kwargs):
|
800 |
+
self.calculator_type = kwargs.get("calculator_type", "UniversalCalculator")
|
801 |
+
|
802 |
+
if self.calculator_type == "UniversalCalculator": # top K calculator
|
803 |
+
self.calculator = UniversalCalculator(
|
804 |
+
experts,
|
805 |
+
multiply_gate_scores=kwargs.get("multiply_gate_scores", True),
|
806 |
+
score_scale_factor=kwargs.get("score_scale_factor", 1.0),
|
807 |
+
add_weight_norm=kwargs.get("add_weight_norm", False),
|
808 |
+
)
|
809 |
+
else:
|
810 |
+
raise NotImplementedError
|
811 |
+
|
812 |
+
def forward(self, x) -> MoEMlpOutput:
|
813 |
+
original_shape = x.shape[:-1]
|
814 |
+
x = x.reshape(-1, self.input_size)
|
815 |
+
gate_outputs: dict = self.gate(x)
|
816 |
+
calc_outs: CalculatorOutput = self.calculator(x, **gate_outputs)
|
817 |
+
y = calc_outs.hidden_states
|
818 |
+
y = y.reshape(original_shape + (self.output_size,))
|
819 |
+
|
820 |
+
return MoEMlpOutput(
|
821 |
+
hidden_states=y,
|
822 |
+
balance_loss=gate_outputs.get("balance_loss"),
|
823 |
+
num_dropped_tokens=calc_outs.num_dropped_tokens,
|
824 |
+
gate_load=gate_outputs.get("load", torch.tensor(-1)),
|
825 |
+
gate_importance=gate_outputs.get("importance", torch.tensor(-1)),
|
826 |
+
)
|
827 |
+
|
828 |
+
def set_num_selects(self, num_selects):
|
829 |
+
if "num_selects" not in vars(self.gate):
|
830 |
+
raise KeyError(f'{self.gate_type} does not have a key named "num_selects".')
|
831 |
+
elif num_selects > self.gate.num_experts:
|
832 |
+
raise ValueError(
|
833 |
+
'The value of "num_selects" must satisfy "num_selects <= num_experts"!'
|
834 |
+
)
|
835 |
+
elif self.gate_type in ("SwitchBalancedGate",):
|
836 |
+
raise ValueError(
|
837 |
+
f"{self.gate_type} doesn't support manually setting num_selects."
|
838 |
+
)
|
839 |
+
else:
|
840 |
+
self.num_selects = num_selects
|
841 |
+
self.gate.num_selects = num_selects
|
842 |
+
|
843 |
+
def set_gate_use_softmax(self, use_softmax):
|
844 |
+
if "use_softmax" not in vars(self.gate):
|
845 |
+
raise KeyError(f'{self.gate_type} does not have a key named "use_softmax".')
|
846 |
+
else:
|
847 |
+
self.gate.use_softmax = use_softmax
|
848 |
+
|
849 |
+
def set_gate_use_balance(self, use_balance):
|
850 |
+
if "use_balance" not in vars(self.gate):
|
851 |
+
raise KeyError(f'{self.gate_type} does not have a key named "use_balance".')
|
852 |
+
else:
|
853 |
+
self.gate.use_balance = use_balance
|
854 |
+
|
855 |
+
def set_gate_balance_loss_weight(self, balance_loss_weight):
|
856 |
+
if "balance_loss_weight" not in vars(self.gate):
|
857 |
+
raise KeyError(
|
858 |
+
f'{self.gate_type} does not have a key named "balance_loss_weight".'
|
859 |
+
)
|
860 |
+
else:
|
861 |
+
self.gate.balance_loss_weight = balance_loss_weight
|
862 |
+
|
863 |
+
def set_gate_add_noise(self, add_noise):
|
864 |
+
if "add_noise" not in vars(self.gate):
|
865 |
+
raise KeyError(f'{self.gate_type} does not have a key named "add_noise".')
|
866 |
+
else:
|
867 |
+
self.gate.add_noise = add_noise
|
868 |
+
|
869 |
+
def set_gate_noise_epsilon(self, noise_epsilon):
|
870 |
+
if "noise_epsilon" not in vars(self.gate):
|
871 |
+
raise KeyError(
|
872 |
+
f'{self.gate_type} does not have a key named "noise_epsilon".'
|
873 |
+
)
|
874 |
+
else:
|
875 |
+
self.gate.noise_epsilon = noise_epsilon
|
876 |
+
|
877 |
+
def set_calculator_multiply_gate_scores(self, multiply_gate_scores):
|
878 |
+
if "multiply_gate_scores" not in vars(self.calculator):
|
879 |
+
raise KeyError(
|
880 |
+
f'{self.gate_type} does not have a key named "multiply_gate_scores".'
|
881 |
+
)
|
882 |
+
else:
|
883 |
+
self.calculator.multiply_gate_scores = multiply_gate_scores
|
884 |
+
|
885 |
+
def set_calculator_score_scale_factor(self, score_scale_factor):
|
886 |
+
if "score_scale_factor" not in vars(self.calculator):
|
887 |
+
raise KeyError(
|
888 |
+
f'{self.gate_type} does not have a key named "score_scale_factor".'
|
889 |
+
)
|
890 |
+
else:
|
891 |
+
self.calculator.score_scale_factor = score_scale_factor
|
892 |
+
|
893 |
+
def set_calculator_drop_tokens(self, drop_tokens):
|
894 |
+
if "drop_tokens" not in vars(self.calculator):
|
895 |
+
raise KeyError(f'{self.gate_type} does not have a key named "drop_tokens".')
|
896 |
+
elif (
|
897 |
+
drop_tokens
|
898 |
+
and self.calculator.dropped_padding != "zero"
|
899 |
+
and self.input_size != self.output_size
|
900 |
+
):
|
901 |
+
warnings.warn(
|
902 |
+
'Setting "drop_tokens=True" without zero dropped padding when "input_size != output_size" will cause error!'
|
903 |
+
)
|
904 |
+
else:
|
905 |
+
self.calculator.drop_tokens = drop_tokens
|
906 |
+
|
907 |
+
def set_calculator_dropped_padding(self, dropped_padding):
|
908 |
+
if "dropped_padding" not in vars(self.calculator):
|
909 |
+
raise KeyError(
|
910 |
+
f'{self.gate_type} does not have a key named "dropped_padding".'
|
911 |
+
)
|
912 |
+
elif dropped_padding not in self.calculator.available_dropped_padding_choices:
|
913 |
+
raise ValueError(
|
914 |
+
f"'dropped_padding' type not available! (available choices: {self.calculator.available_dropped_padding_choices})"
|
915 |
+
)
|
916 |
+
elif (
|
917 |
+
self.calculator.drop_tokens
|
918 |
+
and dropped_padding != "zero"
|
919 |
+
and self.input_size != self.output_size
|
920 |
+
):
|
921 |
+
warnings.warn(
|
922 |
+
f'Setting "dropped_padding={dropped_padding}" with "drop_tokens=True" when "input_size != output_size" will cause error!'
|
923 |
+
)
|
924 |
+
else:
|
925 |
+
self.calculator.dropped_padding = dropped_padding
|
926 |
+
|
927 |
+
def set_calculator_capacity_factor(self, capacity_factor):
|
928 |
+
if "capacity_factor" not in vars(self.calculator):
|
929 |
+
raise KeyError(
|
930 |
+
f'{self.gate_type} does not have a key named "capacity_factor".'
|
931 |
+
)
|
932 |
+
else:
|
933 |
+
self.calculator.capacity_factor = capacity_factor
|
934 |
+
|
935 |
+
def reset_gate_network(self):
|
936 |
+
self.gate.reset_gate_network()
|
937 |
+
|
938 |
+
def reset_experts(self):
|
939 |
+
self.calculator.reset_experts()
|
940 |
+
|
941 |
+
|
942 |
+
class LinearGLUMoELayer(BaseMoELayer):
|
943 |
+
def __init__(
|
944 |
+
self,
|
945 |
+
input_size,
|
946 |
+
hidden_size,
|
947 |
+
output_size,
|
948 |
+
hidden_act,
|
949 |
+
num_experts,
|
950 |
+
num_selects,
|
951 |
+
size_experts=None,
|
952 |
+
bias=True,
|
953 |
+
**kwargs,
|
954 |
+
):
|
955 |
+
super(LinearGLUMoELayer, self).__init__()
|
956 |
+
assert num_selects <= num_experts
|
957 |
+
self.input_size = input_size
|
958 |
+
self.hidden_size = hidden_size
|
959 |
+
self.output_size = output_size
|
960 |
+
self.hidden_act = hidden_act
|
961 |
+
self.num_experts = num_experts
|
962 |
+
self.num_selects = num_selects
|
963 |
+
self.size_experts = size_experts
|
964 |
+
self.bias = bias
|
965 |
+
|
966 |
+
experts = LinearGLUExperts(
|
967 |
+
input_size,
|
968 |
+
hidden_size,
|
969 |
+
output_size,
|
970 |
+
hidden_act,
|
971 |
+
num_experts,
|
972 |
+
size_experts=size_experts,
|
973 |
+
bias=bias,
|
974 |
+
)
|
975 |
+
|
976 |
+
self._create_gate(**kwargs)
|
977 |
+
self._create_calculator(experts, **kwargs)
|
978 |
+
|
979 |
+
|
980 |
+
class LlamaMoEDecoderLayer(nn.Module):
|
981 |
+
def __init__(self, config: LlamaMoEConfig, layer_index):
|
982 |
+
super().__init__()
|
983 |
+
|
984 |
+
self.hidden_size = config.hidden_size
|
985 |
+
self.self_attn = LlamaAttention(config=config)
|
986 |
+
self.mlp = LlamaMLP(config)
|
987 |
+
self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
988 |
+
self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
989 |
+
|
990 |
+
gating_config = {
|
991 |
+
# all gates
|
992 |
+
"gate_type": config.gate_type,
|
993 |
+
"gate_network": config.gate_network,
|
994 |
+
"gate_use_softmax": config.gate_use_softmax,
|
995 |
+
"gate_use_balance": config.gate_use_balance,
|
996 |
+
"gate_balance_loss_weight": config.gate_balance_loss_weight,
|
997 |
+
"gate_add_noise": config.gate_add_noise,
|
998 |
+
# TopKBalancedNoisyGate
|
999 |
+
"gate_noise_epsilon": config.gate_noise_epsilon,
|
1000 |
+
}
|
1001 |
+
calculator_config = {
|
1002 |
+
# all calculators
|
1003 |
+
"calculator_type": config.calculator_type,
|
1004 |
+
"multiply_gate_scores": config.multiply_gate_scores,
|
1005 |
+
"score_scale_factor": (
|
1006 |
+
config.score_scale_factor[layer_index]
|
1007 |
+
if isinstance(config.score_scale_factor, list)
|
1008 |
+
else config.score_scale_factor
|
1009 |
+
),
|
1010 |
+
"add_weight_norm": config.add_weight_norm,
|
1011 |
+
# SwitchDropTokenCalculator
|
1012 |
+
"drop_tokens": config.drop_tokens,
|
1013 |
+
"dropped_padding": config.dropped_padding,
|
1014 |
+
"capacity_factor": config.capacity_factor,
|
1015 |
+
}
|
1016 |
+
|
1017 |
+
self.mlp = LinearGLUMoELayer(
|
1018 |
+
input_size=self.hidden_size,
|
1019 |
+
hidden_size=config.intermediate_size,
|
1020 |
+
output_size=self.hidden_size,
|
1021 |
+
hidden_act=config.hidden_act,
|
1022 |
+
num_experts=config.num_experts,
|
1023 |
+
num_selects=config.num_selects,
|
1024 |
+
size_experts=(
|
1025 |
+
config.size_experts[layer_index]
|
1026 |
+
if config.size_experts is not None
|
1027 |
+
else None
|
1028 |
+
),
|
1029 |
+
bias=False,
|
1030 |
+
**gating_config,
|
1031 |
+
**calculator_config,
|
1032 |
+
)
|
1033 |
+
|
1034 |
+
def forward(
|
1035 |
+
self,
|
1036 |
+
hidden_states,
|
1037 |
+
attention_mask=None,
|
1038 |
+
position_ids=None,
|
1039 |
+
past_key_value=None,
|
1040 |
+
output_attentions=False,
|
1041 |
+
use_cache=False,
|
1042 |
+
) -> tuple:
|
1043 |
+
residual = hidden_states
|
1044 |
+
hidden_states = self.input_layernorm(hidden_states)
|
1045 |
+
|
1046 |
+
# Self Attention
|
1047 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
1048 |
+
hidden_states=hidden_states,
|
1049 |
+
attention_mask=attention_mask,
|
1050 |
+
position_ids=position_ids,
|
1051 |
+
past_key_value=past_key_value,
|
1052 |
+
output_attentions=output_attentions,
|
1053 |
+
use_cache=use_cache,
|
1054 |
+
)
|
1055 |
+
hidden_states = residual + hidden_states
|
1056 |
+
|
1057 |
+
# Fully Connected
|
1058 |
+
residual = hidden_states
|
1059 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
1060 |
+
mlp_outs: MoEMlpOutput = self.mlp(hidden_states)
|
1061 |
+
hidden_states = residual + mlp_outs.hidden_states
|
1062 |
+
|
1063 |
+
outputs = (
|
1064 |
+
hidden_states,
|
1065 |
+
mlp_outs.balance_loss,
|
1066 |
+
mlp_outs.num_dropped_tokens,
|
1067 |
+
mlp_outs.gate_load,
|
1068 |
+
mlp_outs.gate_importance,
|
1069 |
+
)
|
1070 |
+
if output_attentions:
|
1071 |
+
outputs += (self_attn_weights,)
|
1072 |
+
if use_cache:
|
1073 |
+
outputs += (present_key_value,)
|
1074 |
+
|
1075 |
+
return outputs
|
1076 |
+
|
1077 |
+
def set_moe_num_selects(self, num_selects):
|
1078 |
+
self.mlp.set_num_selects(num_selects)
|
1079 |
+
|
1080 |
+
def set_moe_gate_use_softmax(self, use_softmax):
|
1081 |
+
self.mlp.set_gate_use_softmax(use_softmax)
|
1082 |
+
|
1083 |
+
def set_moe_gate_use_balance(self, use_balance):
|
1084 |
+
self.mlp.set_gate_use_balance(use_balance)
|
1085 |
+
|
1086 |
+
def set_moe_gate_balance_loss_weight(self, balance_loss_weight):
|
1087 |
+
self.mlp.set_gate_balance_loss_weight(balance_loss_weight)
|
1088 |
+
|
1089 |
+
def set_moe_gate_add_noise(self, add_noise):
|
1090 |
+
self.mlp.set_gate_add_noise(add_noise)
|
1091 |
+
|
1092 |
+
def set_moe_gate_noise_epsilon(self, noise_epsilon):
|
1093 |
+
self.mlp.set_gate_noise_epsilon(noise_epsilon)
|
1094 |
+
|
1095 |
+
def set_moe_calculator_multiply_gate_scores(self, multiply_gate_scores):
|
1096 |
+
self.mlp.set_calculator_multiply_gate_scores(multiply_gate_scores)
|
1097 |
+
|
1098 |
+
def set_moe_calculator_score_scale_factor(self, score_scale_factor):
|
1099 |
+
self.mlp.set_calculator_score_scale_factor(score_scale_factor)
|
1100 |
+
|
1101 |
+
def set_moe_calculator_drop_tokens(self, drop_tokens):
|
1102 |
+
self.mlp.set_calculator_drop_tokens(drop_tokens)
|
1103 |
+
|
1104 |
+
def set_moe_calculator_dropped_padding(self, dropped_padding):
|
1105 |
+
self.mlp.set_calculator_dropped_padding(dropped_padding)
|
1106 |
+
|
1107 |
+
def set_moe_calculator_capacity_factor(self, capacity_factor):
|
1108 |
+
self.mlp.set_calculator_capacity_factor(capacity_factor)
|
1109 |
+
|
1110 |
+
def reset_gate_network(self):
|
1111 |
+
self.mlp.reset_gate_network()
|
1112 |
+
|
1113 |
+
def reset_experts(self):
|
1114 |
+
self.mlp.reset_experts()
|
1115 |
+
|
1116 |
+
|
1117 |
+
class LlamaMoEPreTrainedModel(PreTrainedModel):
|
1118 |
+
config_class = LlamaMoEConfig
|
1119 |
+
base_model_prefix = "model"
|
1120 |
+
supports_gradient_checkpointing = True
|
1121 |
+
_no_split_modules = ["LlamaMoEDecoderLayer"]
|
1122 |
+
_skip_keys_device_placement = "past_key_values"
|
1123 |
+
|
1124 |
+
def _init_weights(self, module):
|
1125 |
+
std = self.config.initializer_range
|
1126 |
+
if isinstance(module, nn.Linear):
|
1127 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
1128 |
+
if module.bias is not None:
|
1129 |
+
module.bias.data.zero_()
|
1130 |
+
elif isinstance(module, nn.Embedding):
|
1131 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
1132 |
+
if module.padding_idx is not None:
|
1133 |
+
module.weight.data[module.padding_idx].zero_()
|
1134 |
+
|
1135 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
1136 |
+
if isinstance(module, LlamaMoEModel):
|
1137 |
+
module.gradient_checkpointing = value
|
1138 |
+
|
1139 |
+
|
1140 |
+
class LlamaMoEModel(LlamaMoEPreTrainedModel):
|
1141 |
+
def __init__(self, config: LlamaMoEConfig):
|
1142 |
+
super().__init__(config)
|
1143 |
+
self.padding_idx = config.pad_token_id
|
1144 |
+
self.vocab_size = config.vocab_size
|
1145 |
+
|
1146 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
1147 |
+
self.layers = nn.ModuleList(
|
1148 |
+
[LlamaMoEDecoderLayer(config, i) for i in range(config.num_hidden_layers)]
|
1149 |
+
)
|
1150 |
+
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
1151 |
+
self.gradient_checkpointing = False
|
1152 |
+
self.post_init()
|
1153 |
+
|
1154 |
+
def get_input_embeddings(self):
|
1155 |
+
return self.embed_tokens
|
1156 |
+
|
1157 |
+
def set_input_embeddings(self, value):
|
1158 |
+
self.embed_tokens = value
|
1159 |
+
|
1160 |
+
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
|
1161 |
+
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
1162 |
+
# create causal mask
|
1163 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
1164 |
+
combined_attention_mask = None
|
1165 |
+
if input_shape[-1] > 1:
|
1166 |
+
combined_attention_mask = _make_causal_mask(
|
1167 |
+
input_shape,
|
1168 |
+
inputs_embeds.dtype,
|
1169 |
+
device=inputs_embeds.device,
|
1170 |
+
past_key_values_length=past_key_values_length,
|
1171 |
+
)
|
1172 |
+
|
1173 |
+
if attention_mask is not None:
|
1174 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
1175 |
+
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
|
1176 |
+
inputs_embeds.device
|
1177 |
+
)
|
1178 |
+
combined_attention_mask = (
|
1179 |
+
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
1180 |
+
)
|
1181 |
+
|
1182 |
+
return combined_attention_mask
|
1183 |
+
|
1184 |
+
def forward(
|
1185 |
+
self,
|
1186 |
+
input_ids=None,
|
1187 |
+
attention_mask=None,
|
1188 |
+
position_ids=None,
|
1189 |
+
past_key_values=None,
|
1190 |
+
inputs_embeds=None,
|
1191 |
+
use_cache=None,
|
1192 |
+
output_attentions=None,
|
1193 |
+
output_hidden_states=None,
|
1194 |
+
return_dict=None,
|
1195 |
+
):
|
1196 |
+
output_attentions = (
|
1197 |
+
output_attentions
|
1198 |
+
if output_attentions is not None
|
1199 |
+
else self.config.output_attentions
|
1200 |
+
)
|
1201 |
+
output_hidden_states = (
|
1202 |
+
output_hidden_states
|
1203 |
+
if output_hidden_states is not None
|
1204 |
+
else self.config.output_hidden_states
|
1205 |
+
)
|
1206 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1207 |
+
|
1208 |
+
return_dict = (
|
1209 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1210 |
+
)
|
1211 |
+
|
1212 |
+
# retrieve input_ids and inputs_embeds
|
1213 |
+
if input_ids is not None and inputs_embeds is not None:
|
1214 |
+
raise ValueError(
|
1215 |
+
"You cannot specify both decoder_input_ids and decoder_inputs_embeds at"
|
1216 |
+
" the same time"
|
1217 |
+
)
|
1218 |
+
elif input_ids is not None:
|
1219 |
+
batch_size, seq_length = input_ids.shape
|
1220 |
+
elif inputs_embeds is not None:
|
1221 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
1222 |
+
else:
|
1223 |
+
raise ValueError(
|
1224 |
+
"You have to specify either decoder_input_ids or decoder_inputs_embeds"
|
1225 |
+
)
|
1226 |
+
|
1227 |
+
seq_length_with_past = seq_length
|
1228 |
+
past_key_values_length = 0
|
1229 |
+
|
1230 |
+
if past_key_values is not None:
|
1231 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
1232 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
1233 |
+
|
1234 |
+
if position_ids is None:
|
1235 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
1236 |
+
position_ids = torch.arange(
|
1237 |
+
past_key_values_length,
|
1238 |
+
seq_length + past_key_values_length,
|
1239 |
+
dtype=torch.long,
|
1240 |
+
device=device,
|
1241 |
+
)
|
1242 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
1243 |
+
else:
|
1244 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
1245 |
+
|
1246 |
+
if inputs_embeds is None:
|
1247 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
1248 |
+
# embed positions
|
1249 |
+
if attention_mask is None:
|
1250 |
+
attention_mask = torch.ones(
|
1251 |
+
(batch_size, seq_length_with_past),
|
1252 |
+
dtype=torch.bool,
|
1253 |
+
device=inputs_embeds.device,
|
1254 |
+
)
|
1255 |
+
attention_mask = self._prepare_decoder_attention_mask(
|
1256 |
+
attention_mask,
|
1257 |
+
(batch_size, seq_length),
|
1258 |
+
inputs_embeds,
|
1259 |
+
past_key_values_length,
|
1260 |
+
)
|
1261 |
+
|
1262 |
+
hidden_states = inputs_embeds
|
1263 |
+
balance_loss = 0.0
|
1264 |
+
|
1265 |
+
if self.gradient_checkpointing and self.training:
|
1266 |
+
if use_cache:
|
1267 |
+
logger.warning_once(
|
1268 |
+
"`use_cache=True` is incompatible with gradient checkpointing."
|
1269 |
+
" Setting `use_cache=False`..."
|
1270 |
+
)
|
1271 |
+
use_cache = False
|
1272 |
+
|
1273 |
+
# decoder layers
|
1274 |
+
all_hidden_states = () if output_hidden_states else None
|
1275 |
+
all_self_attns = () if output_attentions else None
|
1276 |
+
next_decoder_cache = () if use_cache else None
|
1277 |
+
|
1278 |
+
num_dropped_tokens = ()
|
1279 |
+
gate_load = ()
|
1280 |
+
gate_importance = ()
|
1281 |
+
for idx, decoder_layer in enumerate(self.layers):
|
1282 |
+
if output_hidden_states:
|
1283 |
+
all_hidden_states += (hidden_states,)
|
1284 |
+
|
1285 |
+
past_key_value = (
|
1286 |
+
past_key_values[idx] if past_key_values is not None else None
|
1287 |
+
)
|
1288 |
+
|
1289 |
+
if self.gradient_checkpointing and self.training:
|
1290 |
+
|
1291 |
+
def create_custom_forward(module):
|
1292 |
+
def custom_forward(*inputs):
|
1293 |
+
# None for past_key_value
|
1294 |
+
return module(*inputs, output_attentions, None)
|
1295 |
+
|
1296 |
+
return custom_forward
|
1297 |
+
|
1298 |
+
layer_outputs: tuple = torch.utils.checkpoint.checkpoint(
|
1299 |
+
create_custom_forward(decoder_layer),
|
1300 |
+
hidden_states,
|
1301 |
+
attention_mask,
|
1302 |
+
position_ids,
|
1303 |
+
None,
|
1304 |
+
)
|
1305 |
+
else:
|
1306 |
+
layer_outputs: tuple = decoder_layer(
|
1307 |
+
hidden_states,
|
1308 |
+
attention_mask=attention_mask,
|
1309 |
+
position_ids=position_ids,
|
1310 |
+
past_key_value=past_key_value,
|
1311 |
+
output_attentions=output_attentions,
|
1312 |
+
use_cache=use_cache,
|
1313 |
+
)
|
1314 |
+
|
1315 |
+
hidden_states = layer_outputs[0]
|
1316 |
+
if layer_outputs[1] is not None:
|
1317 |
+
balance_loss += layer_outputs[1]
|
1318 |
+
|
1319 |
+
if use_cache:
|
1320 |
+
next_decoder_cache += (layer_outputs[6 if output_attentions else 5],)
|
1321 |
+
|
1322 |
+
if output_attentions:
|
1323 |
+
all_self_attns += (layer_outputs[5],)
|
1324 |
+
|
1325 |
+
num_dropped_tokens += (layer_outputs[2],)
|
1326 |
+
gate_load += (layer_outputs[3],)
|
1327 |
+
gate_importance += (layer_outputs[4],)
|
1328 |
+
|
1329 |
+
hidden_states = self.norm(hidden_states)
|
1330 |
+
|
1331 |
+
# add hidden states from the last decoder layer
|
1332 |
+
if output_hidden_states:
|
1333 |
+
all_hidden_states += (hidden_states,)
|
1334 |
+
|
1335 |
+
next_cache = next_decoder_cache if use_cache else None
|
1336 |
+
if not return_dict:
|
1337 |
+
return tuple(
|
1338 |
+
v
|
1339 |
+
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
|
1340 |
+
if v is not None
|
1341 |
+
)
|
1342 |
+
return BaseMoEModelOutputWithPast(
|
1343 |
+
last_hidden_state=hidden_states,
|
1344 |
+
balance_loss=balance_loss,
|
1345 |
+
past_key_values=next_cache,
|
1346 |
+
hidden_states=all_hidden_states,
|
1347 |
+
attentions=all_self_attns,
|
1348 |
+
num_dropped_tokens=num_dropped_tokens,
|
1349 |
+
gate_load=gate_load,
|
1350 |
+
gate_importance=gate_importance,
|
1351 |
+
)
|
1352 |
+
|
1353 |
+
def update_config(self):
|
1354 |
+
self.config.vocab_size = self.config.vocab_size
|
1355 |
+
self.config.max_position_embeddings = self.config.max_position_embeddings
|
1356 |
+
# ↓↓↓↓↓↓↓↓↓↓↓↓ changed here ↓↓↓↓↓↓↓↓↓↓↓↓ #
|
1357 |
+
self.config.hidden_size = self.layers[0].mlp.input_size
|
1358 |
+
self.config.intermediate_size = self.layers[0].mlp.hidden_size
|
1359 |
+
self.config.num_hidden_layers = len(self.layers)
|
1360 |
+
self.config.num_attention_heads = self.layers[0].self_attn.num_heads
|
1361 |
+
self.config.hidden_act = self.layers[0].mlp.hidden_act
|
1362 |
+
# ↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑ #
|
1363 |
+
self.config.initializer_range = self.config.initializer_range
|
1364 |
+
self.config.rms_norm_eps = self.config.rms_norm_eps
|
1365 |
+
self.config.pretraining_tp = self.config.pretraining_tp
|
1366 |
+
self.config.use_cache = self.config.use_cache
|
1367 |
+
self.config.rope_scaling = self.config.rope_scaling
|
1368 |
+
self.config._rope_scaling_validation()
|
1369 |
+
|
1370 |
+
self.config.num_experts = self.layers[0].mlp.num_experts
|
1371 |
+
self.config.num_selects = self.layers[0].mlp.num_selects
|
1372 |
+
self.config.size_experts = [
|
1373 |
+
self.layers[i].mlp.calculator.experts.size_experts
|
1374 |
+
for i in range(self.config.num_hidden_layers)
|
1375 |
+
]
|
1376 |
+
|
1377 |
+
self.config.gate_type = vars(self.layers[0].mlp).get(
|
1378 |
+
"gate_type", "TopKBalancedNoisyGate"
|
1379 |
+
)
|
1380 |
+
self.config.gate_network = vars(self.layers[0].mlp.gate).get(
|
1381 |
+
"gate_network_type", "mlp"
|
1382 |
+
)
|
1383 |
+
self.config.gate_use_softmax = vars(self.layers[0].mlp.gate).get(
|
1384 |
+
"use_softmax", True
|
1385 |
+
)
|
1386 |
+
self.config.gate_use_balance = vars(self.layers[0].mlp.gate).get(
|
1387 |
+
"use_balance", True
|
1388 |
+
)
|
1389 |
+
self.config.gate_balance_loss_weight = vars(self.layers[0].mlp.gate).get(
|
1390 |
+
"balance_loss_weight", 1e-2
|
1391 |
+
)
|
1392 |
+
self.config.gate_add_noise = vars(self.layers[0].mlp.gate).get(
|
1393 |
+
"add_noise", True
|
1394 |
+
)
|
1395 |
+
self.config.gate_noise_epsilon = vars(self.layers[0].mlp.gate).get(
|
1396 |
+
"noise_epsilon", 1e-2
|
1397 |
+
)
|
1398 |
+
|
1399 |
+
self.config.calculator_type = vars(self.layers[0].mlp).get(
|
1400 |
+
"calculator_type", "UniversalCalculator"
|
1401 |
+
)
|
1402 |
+
self.config.multiply_gate_scores = vars(self.layers[0].mlp.calculator).get(
|
1403 |
+
"multiply_gate_scores", True
|
1404 |
+
)
|
1405 |
+
self.config.score_scale_factor = [
|
1406 |
+
vars(self.layers[i].mlp.calculator).get("score_scale_factor", 1.0)
|
1407 |
+
for i in range(self.config.num_hidden_layers)
|
1408 |
+
]
|
1409 |
+
self.config.drop_tokens = vars(self.layers[0].mlp.calculator).get(
|
1410 |
+
"drop_tokens", True
|
1411 |
+
)
|
1412 |
+
self.config.dropped_padding = vars(self.layers[0].mlp.calculator).get(
|
1413 |
+
"dropped_padding", "zero"
|
1414 |
+
)
|
1415 |
+
self.config.capacity_factor = vars(self.layers[0].mlp.calculator).get(
|
1416 |
+
"capacity_factor", 1.25
|
1417 |
+
)
|
1418 |
+
|
1419 |
+
def set_moe_num_selects(self, num_selects):
|
1420 |
+
for idx, decoder_layer in enumerate(self.layers):
|
1421 |
+
decoder_layer.set_moe_num_selects(num_selects)
|
1422 |
+
|
1423 |
+
def set_moe_gate_use_softmax(self, use_softmax):
|
1424 |
+
for idx, decoder_layer in enumerate(self.layers):
|
1425 |
+
decoder_layer.set_moe_gate_use_softmax(use_softmax)
|
1426 |
+
|
1427 |
+
def set_moe_gate_use_balance(self, use_balance):
|
1428 |
+
for idx, decoder_layer in enumerate(self.layers):
|
1429 |
+
decoder_layer.set_moe_gate_use_balance(use_balance)
|
1430 |
+
|
1431 |
+
def set_moe_gate_balance_loss_weight(self, balance_loss_weight):
|
1432 |
+
for idx, decoder_layer in enumerate(self.layers):
|
1433 |
+
decoder_layer.set_moe_gate_balance_loss_weight(balance_loss_weight)
|
1434 |
+
|
1435 |
+
def set_moe_gate_add_noise(self, add_noise):
|
1436 |
+
for idx, decoder_layer in enumerate(self.layers):
|
1437 |
+
decoder_layer.set_moe_gate_add_noise(add_noise)
|
1438 |
+
|
1439 |
+
def set_moe_gate_noise_epsilon(self, noise_epsilon):
|
1440 |
+
for idx, decoder_layer in enumerate(self.layers):
|
1441 |
+
decoder_layer.set_moe_gate_noise_epsilon(noise_epsilon)
|
1442 |
+
|
1443 |
+
def set_moe_calculator_multiply_gate_scores(self, multiply_gate_scores):
|
1444 |
+
for idx, decoder_layer in enumerate(self.layers):
|
1445 |
+
decoder_layer.set_moe_calculator_multiply_gate_scores(multiply_gate_scores)
|
1446 |
+
|
1447 |
+
def set_moe_calculator_score_scale_factor(
|
1448 |
+
self, score_scale_factor, layer_index=None
|
1449 |
+
):
|
1450 |
+
if layer_index is None:
|
1451 |
+
for idx, decoder_layer in enumerate(self.layers):
|
1452 |
+
decoder_layer.set_moe_calculator_score_scale_factor(score_scale_factor)
|
1453 |
+
else:
|
1454 |
+
self.layers[layer_index].set_moe_calculator_score_scale_factor(
|
1455 |
+
score_scale_factor
|
1456 |
+
)
|
1457 |
+
|
1458 |
+
def set_moe_calculator_drop_tokens(self, drop_tokens):
|
1459 |
+
for idx, decoder_layer in enumerate(self.layers):
|
1460 |
+
decoder_layer.set_moe_calculator_drop_tokens(drop_tokens)
|
1461 |
+
|
1462 |
+
def set_moe_calculator_dropped_padding(self, dropped_padding):
|
1463 |
+
for idx, decoder_layer in enumerate(self.layers):
|
1464 |
+
decoder_layer.set_moe_calculator_dropped_padding(dropped_padding)
|
1465 |
+
|
1466 |
+
def set_moe_calculator_capacity_factor(self, capacity_factor):
|
1467 |
+
for idx, decoder_layer in enumerate(self.layers):
|
1468 |
+
decoder_layer.set_moe_calculator_capacity_factor(capacity_factor)
|
1469 |
+
|
1470 |
+
def reset_gate_network(self):
|
1471 |
+
for idx, decoder_layer in enumerate(self.layers):
|
1472 |
+
decoder_layer.reset_gate_network()
|
1473 |
+
|
1474 |
+
def reset_experts(self):
|
1475 |
+
for idx, decoder_layer in enumerate(self.layers):
|
1476 |
+
decoder_layer.reset_experts()
|
1477 |
+
|
1478 |
+
|
1479 |
+
class LlamaMoEForCausalLM(LlamaMoEPreTrainedModel):
|
1480 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1481 |
+
|
1482 |
+
def __init__(self, config):
|
1483 |
+
super().__init__(config)
|
1484 |
+
self.model = LlamaMoEModel(config)
|
1485 |
+
self.pretraining_tp = config.pretraining_tp
|
1486 |
+
self.vocab_size = config.vocab_size
|
1487 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1488 |
+
|
1489 |
+
# Initialize weights and apply final processing
|
1490 |
+
self.post_init()
|
1491 |
+
|
1492 |
+
def get_input_embeddings(self):
|
1493 |
+
return self.model.embed_tokens
|
1494 |
+
|
1495 |
+
def set_input_embeddings(self, value):
|
1496 |
+
self.model.embed_tokens = value
|
1497 |
+
|
1498 |
+
def get_output_embeddings(self):
|
1499 |
+
return self.lm_head
|
1500 |
+
|
1501 |
+
def set_output_embeddings(self, new_embeddings):
|
1502 |
+
self.lm_head = new_embeddings
|
1503 |
+
|
1504 |
+
def set_decoder(self, decoder):
|
1505 |
+
self.model = decoder
|
1506 |
+
|
1507 |
+
def get_decoder(self):
|
1508 |
+
return self.model
|
1509 |
+
|
1510 |
+
def forward(
|
1511 |
+
self,
|
1512 |
+
input_ids=None,
|
1513 |
+
attention_mask=None,
|
1514 |
+
position_ids=None,
|
1515 |
+
past_key_values=None,
|
1516 |
+
inputs_embeds=None,
|
1517 |
+
labels=None,
|
1518 |
+
use_cache=None,
|
1519 |
+
output_attentions=None,
|
1520 |
+
output_hidden_states=None,
|
1521 |
+
return_dict=None,
|
1522 |
+
**kwargs,
|
1523 |
+
):
|
1524 |
+
output_attentions = (
|
1525 |
+
output_attentions
|
1526 |
+
if output_attentions is not None
|
1527 |
+
else self.config.output_attentions
|
1528 |
+
)
|
1529 |
+
output_hidden_states = (
|
1530 |
+
output_hidden_states
|
1531 |
+
if output_hidden_states is not None
|
1532 |
+
else self.config.output_hidden_states
|
1533 |
+
)
|
1534 |
+
return_dict = (
|
1535 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1536 |
+
)
|
1537 |
+
|
1538 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1539 |
+
outputs: BaseMoEModelOutputWithPast = self.model(
|
1540 |
+
input_ids=input_ids,
|
1541 |
+
attention_mask=attention_mask,
|
1542 |
+
position_ids=position_ids,
|
1543 |
+
past_key_values=past_key_values,
|
1544 |
+
inputs_embeds=inputs_embeds,
|
1545 |
+
use_cache=use_cache,
|
1546 |
+
output_attentions=output_attentions,
|
1547 |
+
output_hidden_states=output_hidden_states,
|
1548 |
+
return_dict=return_dict,
|
1549 |
+
)
|
1550 |
+
|
1551 |
+
hidden_states = outputs.last_hidden_state
|
1552 |
+
logits = self.lm_head(hidden_states)
|
1553 |
+
|
1554 |
+
loss = None
|
1555 |
+
if labels is not None:
|
1556 |
+
# Shift so that tokens < n predict n
|
1557 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1558 |
+
shift_labels = labels[..., 1:].contiguous()
|
1559 |
+
# Flatten the tokens
|
1560 |
+
loss_fct = nn.CrossEntropyLoss()
|
1561 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1562 |
+
shift_labels = shift_labels.view(-1)
|
1563 |
+
# Enable model parallelism
|
1564 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1565 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1566 |
+
if outputs.balance_loss is not None and outputs.balance_loss > 0:
|
1567 |
+
loss += outputs.balance_loss
|
1568 |
+
|
1569 |
+
if not return_dict:
|
1570 |
+
output = (logits,) + outputs[1:]
|
1571 |
+
return (loss,) + output if loss is not None else output
|
1572 |
+
|
1573 |
+
return MoECausalLMOutputWithPast(loss=loss,logits=logits)
|
1574 |
+
"""
|
1575 |
+
return MoECausalLMOutputWithPast(
|
1576 |
+
loss=loss,
|
1577 |
+
logits=logits,
|
1578 |
+
past_key_values=outputs.past_key_values,
|
1579 |
+
hidden_states=outputs.hidden_states,
|
1580 |
+
attentions=outputs.attentions,
|
1581 |
+
num_dropped_tokens=outputs.num_dropped_tokens,
|
1582 |
+
balance_loss=outputs.balance_loss,
|
1583 |
+
gate_load=outputs.gate_load,
|
1584 |
+
gate_importance=outputs.gate_importance,
|
1585 |
+
)
|
1586 |
+
"""
|
1587 |
+
|
1588 |
+
def prepare_inputs_for_generation(
|
1589 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
1590 |
+
):
|
1591 |
+
if past_key_values:
|
1592 |
+
input_ids = input_ids[:, -1:]
|
1593 |
+
|
1594 |
+
position_ids = kwargs.get("position_ids", None)
|
1595 |
+
if attention_mask is not None and position_ids is None:
|
1596 |
+
# create position_ids on the fly for batch generation
|
1597 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1598 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1599 |
+
if past_key_values:
|
1600 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
1601 |
+
|
1602 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1603 |
+
if inputs_embeds is not None and past_key_values is None:
|
1604 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
1605 |
+
else:
|
1606 |
+
model_inputs = {"input_ids": input_ids}
|
1607 |
+
|
1608 |
+
model_inputs.update(
|
1609 |
+
{
|
1610 |
+
"position_ids": position_ids,
|
1611 |
+
"past_key_values": past_key_values,
|
1612 |
+
"use_cache": kwargs.get("use_cache"),
|
1613 |
+
"attention_mask": attention_mask,
|
1614 |
+
}
|
1615 |
+
)
|
1616 |
+
return model_inputs
|
1617 |
+
|
1618 |
+
@staticmethod
|
1619 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1620 |
+
reordered_past = ()
|
1621 |
+
for layer_past in past_key_values:
|
1622 |
+
reordered_past += (
|
1623 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
1624 |
+
)
|
1625 |
+
return reordered_past
|
1626 |
+
|
1627 |
+
def update_config(self):
|
1628 |
+
self.model.update_config()
|
1629 |
+
|
1630 |
+
def set_moe_num_selects(self, num_selects):
|
1631 |
+
self.model.set_moe_num_selects(num_selects)
|
1632 |
+
|
1633 |
+
def set_moe_gate_use_softmax(self, use_softmax):
|
1634 |
+
self.model.set_moe_gate_use_softmax(use_softmax)
|
1635 |
+
|
1636 |
+
def set_moe_gate_use_balance(self, use_balance):
|
1637 |
+
self.model.set_moe_gate_use_balance(use_balance)
|
1638 |
+
|
1639 |
+
def set_moe_gate_balance_loss_weight(self, balance_loss_weight):
|
1640 |
+
self.model.set_moe_gate_balance_loss_weight(balance_loss_weight)
|
1641 |
+
|
1642 |
+
def set_moe_gate_add_noise(self, add_noise):
|
1643 |
+
self.model.set_moe_gate_add_noise(add_noise)
|
1644 |
+
|
1645 |
+
def set_moe_gate_noise_epsilon(self, noise_epsilon):
|
1646 |
+
self.model.set_moe_gate_noise_epsilon(noise_epsilon)
|
1647 |
+
|
1648 |
+
def set_moe_calculator_multiply_gate_scores(self, multiply_gate_scores):
|
1649 |
+
self.model.set_moe_calculator_multiply_gate_scores(multiply_gate_scores)
|
1650 |
+
|
1651 |
+
def set_moe_calculator_score_scale_factor(
|
1652 |
+
self, score_scale_factor, layer_index=None
|
1653 |
+
):
|
1654 |
+
self.model.set_moe_calculator_score_scale_factor(
|
1655 |
+
score_scale_factor, layer_index=layer_index
|
1656 |
+
)
|
1657 |
+
|
1658 |
+
def set_moe_calculator_drop_tokens(self, drop_tokens):
|
1659 |
+
self.model.set_moe_calculator_drop_tokens(drop_tokens)
|
1660 |
+
|
1661 |
+
def set_moe_calculator_dropped_padding(self, dropped_padding):
|
1662 |
+
self.model.set_moe_calculator_dropped_padding(dropped_padding)
|
1663 |
+
|
1664 |
+
def set_moe_calculator_capacity_factor(self, capacity_factor):
|
1665 |
+
self.model.set_moe_calculator_capacity_factor(capacity_factor)
|
1666 |
+
|
1667 |
+
def reset_gate_network(self):
|
1668 |
+
self.model.reset_gate_network()
|
1669 |
+
|
1670 |
+
def reset_experts(self):
|
1671 |
+
self.model.reset_experts()
|
1672 |
+
|
1673 |
+
@classmethod
|
1674 |
+
def from_pretrained(cls, *model_args, **kwargs):
|
1675 |
+
config = kwargs.pop("config", None)
|
1676 |
+
model = cls(config)
|
1677 |
+
state_dict = kwargs.pop("moe_state_dict", None)
|
1678 |
+
if state_dict is not None:
|
1679 |
+
model.load_state_dict(state_dict)
|
1680 |
+
return model
|
1681 |
+
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:72a4694795727b8ab44d14d818c17062cd74bb4bb2e5bffbcecb9d1384e17ca9
|
3 |
+
size 1061241998
|
special_tokens_map.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"unk_token": {
|
17 |
+
"content": "<unk>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": true,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
}
|
23 |
+
}
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
3 |
+
size 499723
|
tokenizer_config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"bos_token": {
|
5 |
+
"__type": "AddedToken",
|
6 |
+
"content": "<s>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": true,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"clean_up_tokenization_spaces": false,
|
13 |
+
"eos_token": {
|
14 |
+
"__type": "AddedToken",
|
15 |
+
"content": "</s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": true,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false
|
20 |
+
},
|
21 |
+
"model_max_length": 2048,
|
22 |
+
"pad_token": null,
|
23 |
+
"sp_model_kwargs": {},
|
24 |
+
"tokenizer_class": "LlamaTokenizer",
|
25 |
+
"unk_token": {
|
26 |
+
"__type": "AddedToken",
|
27 |
+
"content": "<unk>",
|
28 |
+
"lstrip": false,
|
29 |
+
"normalized": true,
|
30 |
+
"rstrip": false,
|
31 |
+
"single_word": false
|
32 |
+
},
|
33 |
+
"use_fast": true
|
34 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,3565 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 1.0,
|
5 |
+
"global_step": 59035,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 0.0,
|
12 |
+
"learning_rate": 4.9915304480392985e-05,
|
13 |
+
"loss": 3.6733,
|
14 |
+
"step": 100
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"epoch": 0.0,
|
18 |
+
"learning_rate": 4.983060896078598e-05,
|
19 |
+
"loss": 3.625,
|
20 |
+
"step": 200
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 0.01,
|
24 |
+
"learning_rate": 4.9745913441178964e-05,
|
25 |
+
"loss": 3.5944,
|
26 |
+
"step": 300
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"epoch": 0.01,
|
30 |
+
"learning_rate": 4.966121792157195e-05,
|
31 |
+
"loss": 3.5842,
|
32 |
+
"step": 400
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 0.01,
|
36 |
+
"learning_rate": 4.9576522401964936e-05,
|
37 |
+
"loss": 3.5584,
|
38 |
+
"step": 500
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.01,
|
42 |
+
"learning_rate": 4.9491826882357925e-05,
|
43 |
+
"loss": 3.5428,
|
44 |
+
"step": 600
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.01,
|
48 |
+
"learning_rate": 4.9407131362750914e-05,
|
49 |
+
"loss": 3.5307,
|
50 |
+
"step": 700
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"epoch": 0.01,
|
54 |
+
"learning_rate": 4.93224358431439e-05,
|
55 |
+
"loss": 3.5306,
|
56 |
+
"step": 800
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"epoch": 0.02,
|
60 |
+
"learning_rate": 4.9237740323536886e-05,
|
61 |
+
"loss": 3.527,
|
62 |
+
"step": 900
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"epoch": 0.02,
|
66 |
+
"learning_rate": 4.9153044803929875e-05,
|
67 |
+
"loss": 3.5105,
|
68 |
+
"step": 1000
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"epoch": 0.02,
|
72 |
+
"learning_rate": 4.9068349284322865e-05,
|
73 |
+
"loss": 3.5141,
|
74 |
+
"step": 1100
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"epoch": 0.02,
|
78 |
+
"learning_rate": 4.898365376471585e-05,
|
79 |
+
"loss": 3.4989,
|
80 |
+
"step": 1200
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.02,
|
84 |
+
"learning_rate": 4.889895824510884e-05,
|
85 |
+
"loss": 3.4976,
|
86 |
+
"step": 1300
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.02,
|
90 |
+
"learning_rate": 4.8814262725501826e-05,
|
91 |
+
"loss": 3.5103,
|
92 |
+
"step": 1400
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"epoch": 0.03,
|
96 |
+
"learning_rate": 4.872956720589481e-05,
|
97 |
+
"loss": 3.5097,
|
98 |
+
"step": 1500
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"epoch": 0.03,
|
102 |
+
"learning_rate": 4.86448716862878e-05,
|
103 |
+
"loss": 3.5,
|
104 |
+
"step": 1600
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"epoch": 0.03,
|
108 |
+
"learning_rate": 4.856017616668079e-05,
|
109 |
+
"loss": 3.4815,
|
110 |
+
"step": 1700
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"epoch": 0.03,
|
114 |
+
"learning_rate": 4.847548064707377e-05,
|
115 |
+
"loss": 3.4799,
|
116 |
+
"step": 1800
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"epoch": 0.03,
|
120 |
+
"learning_rate": 4.839078512746676e-05,
|
121 |
+
"loss": 3.4787,
|
122 |
+
"step": 1900
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.03,
|
126 |
+
"learning_rate": 4.830608960785974e-05,
|
127 |
+
"loss": 3.462,
|
128 |
+
"step": 2000
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.04,
|
132 |
+
"learning_rate": 4.822139408825274e-05,
|
133 |
+
"loss": 3.467,
|
134 |
+
"step": 2100
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"epoch": 0.04,
|
138 |
+
"learning_rate": 4.813669856864572e-05,
|
139 |
+
"loss": 3.4687,
|
140 |
+
"step": 2200
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"epoch": 0.04,
|
144 |
+
"learning_rate": 4.805200304903871e-05,
|
145 |
+
"loss": 3.4582,
|
146 |
+
"step": 2300
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"epoch": 0.04,
|
150 |
+
"learning_rate": 4.796730752943169e-05,
|
151 |
+
"loss": 3.4537,
|
152 |
+
"step": 2400
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"epoch": 0.04,
|
156 |
+
"learning_rate": 4.788261200982468e-05,
|
157 |
+
"loss": 3.4518,
|
158 |
+
"step": 2500
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"epoch": 0.04,
|
162 |
+
"learning_rate": 4.779791649021767e-05,
|
163 |
+
"loss": 3.4474,
|
164 |
+
"step": 2600
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 0.05,
|
168 |
+
"learning_rate": 4.7713220970610654e-05,
|
169 |
+
"loss": 3.4428,
|
170 |
+
"step": 2700
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.05,
|
174 |
+
"learning_rate": 4.762852545100364e-05,
|
175 |
+
"loss": 3.4255,
|
176 |
+
"step": 2800
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"epoch": 0.05,
|
180 |
+
"learning_rate": 4.754382993139663e-05,
|
181 |
+
"loss": 3.4417,
|
182 |
+
"step": 2900
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"epoch": 0.05,
|
186 |
+
"learning_rate": 4.745913441178962e-05,
|
187 |
+
"loss": 3.4478,
|
188 |
+
"step": 3000
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"epoch": 0.05,
|
192 |
+
"learning_rate": 4.7374438892182604e-05,
|
193 |
+
"loss": 3.4525,
|
194 |
+
"step": 3100
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"epoch": 0.05,
|
198 |
+
"learning_rate": 4.7289743372575594e-05,
|
199 |
+
"loss": 3.4398,
|
200 |
+
"step": 3200
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"epoch": 0.06,
|
204 |
+
"learning_rate": 4.720504785296858e-05,
|
205 |
+
"loss": 3.4446,
|
206 |
+
"step": 3300
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 0.06,
|
210 |
+
"learning_rate": 4.7120352333361565e-05,
|
211 |
+
"loss": 3.4213,
|
212 |
+
"step": 3400
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.06,
|
216 |
+
"learning_rate": 4.7035656813754555e-05,
|
217 |
+
"loss": 3.4228,
|
218 |
+
"step": 3500
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"epoch": 0.06,
|
222 |
+
"learning_rate": 4.6950961294147544e-05,
|
223 |
+
"loss": 3.4218,
|
224 |
+
"step": 3600
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"epoch": 0.06,
|
228 |
+
"learning_rate": 4.686626577454053e-05,
|
229 |
+
"loss": 3.4119,
|
230 |
+
"step": 3700
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"epoch": 0.06,
|
234 |
+
"learning_rate": 4.6781570254933516e-05,
|
235 |
+
"loss": 3.4226,
|
236 |
+
"step": 3800
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"epoch": 0.07,
|
240 |
+
"learning_rate": 4.66968747353265e-05,
|
241 |
+
"loss": 3.4109,
|
242 |
+
"step": 3900
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"epoch": 0.07,
|
246 |
+
"learning_rate": 4.6612179215719495e-05,
|
247 |
+
"loss": 3.4229,
|
248 |
+
"step": 4000
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 0.07,
|
252 |
+
"learning_rate": 4.652748369611248e-05,
|
253 |
+
"loss": 3.4124,
|
254 |
+
"step": 4100
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.07,
|
258 |
+
"learning_rate": 4.644278817650547e-05,
|
259 |
+
"loss": 3.4037,
|
260 |
+
"step": 4200
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"epoch": 0.07,
|
264 |
+
"learning_rate": 4.635809265689845e-05,
|
265 |
+
"loss": 3.418,
|
266 |
+
"step": 4300
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"epoch": 0.07,
|
270 |
+
"learning_rate": 4.627339713729144e-05,
|
271 |
+
"loss": 3.4158,
|
272 |
+
"step": 4400
|
273 |
+
},
|
274 |
+
{
|
275 |
+
"epoch": 0.08,
|
276 |
+
"learning_rate": 4.618870161768443e-05,
|
277 |
+
"loss": 3.4151,
|
278 |
+
"step": 4500
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"epoch": 0.08,
|
282 |
+
"learning_rate": 4.610400609807741e-05,
|
283 |
+
"loss": 3.3993,
|
284 |
+
"step": 4600
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"epoch": 0.08,
|
288 |
+
"learning_rate": 4.6019310578470407e-05,
|
289 |
+
"loss": 3.4016,
|
290 |
+
"step": 4700
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 0.08,
|
294 |
+
"learning_rate": 4.593461505886339e-05,
|
295 |
+
"loss": 3.4012,
|
296 |
+
"step": 4800
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.08,
|
300 |
+
"learning_rate": 4.584991953925638e-05,
|
301 |
+
"loss": 3.4052,
|
302 |
+
"step": 4900
|
303 |
+
},
|
304 |
+
{
|
305 |
+
"epoch": 0.08,
|
306 |
+
"learning_rate": 4.576522401964936e-05,
|
307 |
+
"loss": 3.3892,
|
308 |
+
"step": 5000
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"epoch": 0.09,
|
312 |
+
"learning_rate": 4.568052850004235e-05,
|
313 |
+
"loss": 3.3988,
|
314 |
+
"step": 5100
|
315 |
+
},
|
316 |
+
{
|
317 |
+
"epoch": 0.09,
|
318 |
+
"learning_rate": 4.559583298043534e-05,
|
319 |
+
"loss": 3.3904,
|
320 |
+
"step": 5200
|
321 |
+
},
|
322 |
+
{
|
323 |
+
"epoch": 0.09,
|
324 |
+
"learning_rate": 4.551113746082832e-05,
|
325 |
+
"loss": 3.3914,
|
326 |
+
"step": 5300
|
327 |
+
},
|
328 |
+
{
|
329 |
+
"epoch": 0.09,
|
330 |
+
"learning_rate": 4.542644194122131e-05,
|
331 |
+
"loss": 3.3866,
|
332 |
+
"step": 5400
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"epoch": 0.09,
|
336 |
+
"learning_rate": 4.53417464216143e-05,
|
337 |
+
"loss": 3.4047,
|
338 |
+
"step": 5500
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.09,
|
342 |
+
"learning_rate": 4.5257050902007284e-05,
|
343 |
+
"loss": 3.3882,
|
344 |
+
"step": 5600
|
345 |
+
},
|
346 |
+
{
|
347 |
+
"epoch": 0.1,
|
348 |
+
"learning_rate": 4.517235538240027e-05,
|
349 |
+
"loss": 3.386,
|
350 |
+
"step": 5700
|
351 |
+
},
|
352 |
+
{
|
353 |
+
"epoch": 0.1,
|
354 |
+
"learning_rate": 4.5087659862793255e-05,
|
355 |
+
"loss": 3.3753,
|
356 |
+
"step": 5800
|
357 |
+
},
|
358 |
+
{
|
359 |
+
"epoch": 0.1,
|
360 |
+
"learning_rate": 4.500296434318625e-05,
|
361 |
+
"loss": 3.3788,
|
362 |
+
"step": 5900
|
363 |
+
},
|
364 |
+
{
|
365 |
+
"epoch": 0.1,
|
366 |
+
"learning_rate": 4.4918268823579234e-05,
|
367 |
+
"loss": 3.3694,
|
368 |
+
"step": 6000
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"epoch": 0.1,
|
372 |
+
"learning_rate": 4.4833573303972223e-05,
|
373 |
+
"loss": 3.3764,
|
374 |
+
"step": 6100
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 0.11,
|
378 |
+
"learning_rate": 4.474887778436521e-05,
|
379 |
+
"loss": 3.3728,
|
380 |
+
"step": 6200
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.11,
|
384 |
+
"learning_rate": 4.4664182264758195e-05,
|
385 |
+
"loss": 3.3889,
|
386 |
+
"step": 6300
|
387 |
+
},
|
388 |
+
{
|
389 |
+
"epoch": 0.11,
|
390 |
+
"learning_rate": 4.4579486745151185e-05,
|
391 |
+
"loss": 3.3798,
|
392 |
+
"step": 6400
|
393 |
+
},
|
394 |
+
{
|
395 |
+
"epoch": 0.11,
|
396 |
+
"learning_rate": 4.449479122554417e-05,
|
397 |
+
"loss": 3.3877,
|
398 |
+
"step": 6500
|
399 |
+
},
|
400 |
+
{
|
401 |
+
"epoch": 0.11,
|
402 |
+
"learning_rate": 4.4410095705937163e-05,
|
403 |
+
"loss": 3.3784,
|
404 |
+
"step": 6600
|
405 |
+
},
|
406 |
+
{
|
407 |
+
"epoch": 0.11,
|
408 |
+
"learning_rate": 4.4325400186330146e-05,
|
409 |
+
"loss": 3.3791,
|
410 |
+
"step": 6700
|
411 |
+
},
|
412 |
+
{
|
413 |
+
"epoch": 0.12,
|
414 |
+
"learning_rate": 4.424070466672313e-05,
|
415 |
+
"loss": 3.3634,
|
416 |
+
"step": 6800
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"epoch": 0.12,
|
420 |
+
"learning_rate": 4.415600914711612e-05,
|
421 |
+
"loss": 3.3735,
|
422 |
+
"step": 6900
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.12,
|
426 |
+
"learning_rate": 4.407131362750911e-05,
|
427 |
+
"loss": 3.3628,
|
428 |
+
"step": 7000
|
429 |
+
},
|
430 |
+
{
|
431 |
+
"epoch": 0.12,
|
432 |
+
"learning_rate": 4.3986618107902097e-05,
|
433 |
+
"loss": 3.3631,
|
434 |
+
"step": 7100
|
435 |
+
},
|
436 |
+
{
|
437 |
+
"epoch": 0.12,
|
438 |
+
"learning_rate": 4.390192258829508e-05,
|
439 |
+
"loss": 3.3781,
|
440 |
+
"step": 7200
|
441 |
+
},
|
442 |
+
{
|
443 |
+
"epoch": 0.12,
|
444 |
+
"learning_rate": 4.381722706868807e-05,
|
445 |
+
"loss": 3.3661,
|
446 |
+
"step": 7300
|
447 |
+
},
|
448 |
+
{
|
449 |
+
"epoch": 0.13,
|
450 |
+
"learning_rate": 4.373253154908106e-05,
|
451 |
+
"loss": 3.357,
|
452 |
+
"step": 7400
|
453 |
+
},
|
454 |
+
{
|
455 |
+
"epoch": 0.13,
|
456 |
+
"learning_rate": 4.364783602947404e-05,
|
457 |
+
"loss": 3.3617,
|
458 |
+
"step": 7500
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"epoch": 0.13,
|
462 |
+
"learning_rate": 4.356314050986703e-05,
|
463 |
+
"loss": 3.3608,
|
464 |
+
"step": 7600
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.13,
|
468 |
+
"learning_rate": 4.347844499026002e-05,
|
469 |
+
"loss": 3.3688,
|
470 |
+
"step": 7700
|
471 |
+
},
|
472 |
+
{
|
473 |
+
"epoch": 0.13,
|
474 |
+
"learning_rate": 4.339374947065301e-05,
|
475 |
+
"loss": 3.3568,
|
476 |
+
"step": 7800
|
477 |
+
},
|
478 |
+
{
|
479 |
+
"epoch": 0.13,
|
480 |
+
"learning_rate": 4.330905395104599e-05,
|
481 |
+
"loss": 3.3558,
|
482 |
+
"step": 7900
|
483 |
+
},
|
484 |
+
{
|
485 |
+
"epoch": 0.14,
|
486 |
+
"learning_rate": 4.322435843143898e-05,
|
487 |
+
"loss": 3.3519,
|
488 |
+
"step": 8000
|
489 |
+
},
|
490 |
+
{
|
491 |
+
"epoch": 0.14,
|
492 |
+
"learning_rate": 4.313966291183197e-05,
|
493 |
+
"loss": 3.3446,
|
494 |
+
"step": 8100
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"epoch": 0.14,
|
498 |
+
"learning_rate": 4.305496739222495e-05,
|
499 |
+
"loss": 3.3601,
|
500 |
+
"step": 8200
|
501 |
+
},
|
502 |
+
{
|
503 |
+
"epoch": 0.14,
|
504 |
+
"learning_rate": 4.297027187261794e-05,
|
505 |
+
"loss": 3.3536,
|
506 |
+
"step": 8300
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.14,
|
510 |
+
"learning_rate": 4.2885576353010924e-05,
|
511 |
+
"loss": 3.3516,
|
512 |
+
"step": 8400
|
513 |
+
},
|
514 |
+
{
|
515 |
+
"epoch": 0.14,
|
516 |
+
"learning_rate": 4.280088083340392e-05,
|
517 |
+
"loss": 3.3506,
|
518 |
+
"step": 8500
|
519 |
+
},
|
520 |
+
{
|
521 |
+
"epoch": 0.15,
|
522 |
+
"learning_rate": 4.27161853137969e-05,
|
523 |
+
"loss": 3.3596,
|
524 |
+
"step": 8600
|
525 |
+
},
|
526 |
+
{
|
527 |
+
"epoch": 0.15,
|
528 |
+
"learning_rate": 4.2631489794189885e-05,
|
529 |
+
"loss": 3.3403,
|
530 |
+
"step": 8700
|
531 |
+
},
|
532 |
+
{
|
533 |
+
"epoch": 0.15,
|
534 |
+
"learning_rate": 4.2546794274582875e-05,
|
535 |
+
"loss": 3.3462,
|
536 |
+
"step": 8800
|
537 |
+
},
|
538 |
+
{
|
539 |
+
"epoch": 0.15,
|
540 |
+
"learning_rate": 4.2462098754975864e-05,
|
541 |
+
"loss": 3.3527,
|
542 |
+
"step": 8900
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"epoch": 0.15,
|
546 |
+
"learning_rate": 4.237740323536885e-05,
|
547 |
+
"loss": 3.3366,
|
548 |
+
"step": 9000
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.15,
|
552 |
+
"learning_rate": 4.2292707715761836e-05,
|
553 |
+
"loss": 3.3477,
|
554 |
+
"step": 9100
|
555 |
+
},
|
556 |
+
{
|
557 |
+
"epoch": 0.16,
|
558 |
+
"learning_rate": 4.2208012196154825e-05,
|
559 |
+
"loss": 3.3442,
|
560 |
+
"step": 9200
|
561 |
+
},
|
562 |
+
{
|
563 |
+
"epoch": 0.16,
|
564 |
+
"learning_rate": 4.2123316676547815e-05,
|
565 |
+
"loss": 3.3409,
|
566 |
+
"step": 9300
|
567 |
+
},
|
568 |
+
{
|
569 |
+
"epoch": 0.16,
|
570 |
+
"learning_rate": 4.20386211569408e-05,
|
571 |
+
"loss": 3.3388,
|
572 |
+
"step": 9400
|
573 |
+
},
|
574 |
+
{
|
575 |
+
"epoch": 0.16,
|
576 |
+
"learning_rate": 4.1953925637333787e-05,
|
577 |
+
"loss": 3.3477,
|
578 |
+
"step": 9500
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"epoch": 0.16,
|
582 |
+
"learning_rate": 4.1869230117726776e-05,
|
583 |
+
"loss": 3.3408,
|
584 |
+
"step": 9600
|
585 |
+
},
|
586 |
+
{
|
587 |
+
"epoch": 0.16,
|
588 |
+
"learning_rate": 4.1784534598119765e-05,
|
589 |
+
"loss": 3.3139,
|
590 |
+
"step": 9700
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.17,
|
594 |
+
"learning_rate": 4.169983907851275e-05,
|
595 |
+
"loss": 3.3397,
|
596 |
+
"step": 9800
|
597 |
+
},
|
598 |
+
{
|
599 |
+
"epoch": 0.17,
|
600 |
+
"learning_rate": 4.161514355890573e-05,
|
601 |
+
"loss": 3.3409,
|
602 |
+
"step": 9900
|
603 |
+
},
|
604 |
+
{
|
605 |
+
"epoch": 0.17,
|
606 |
+
"learning_rate": 4.1530448039298726e-05,
|
607 |
+
"loss": 3.3583,
|
608 |
+
"step": 10000
|
609 |
+
},
|
610 |
+
{
|
611 |
+
"epoch": 0.17,
|
612 |
+
"learning_rate": 4.144575251969171e-05,
|
613 |
+
"loss": 3.327,
|
614 |
+
"step": 10100
|
615 |
+
},
|
616 |
+
{
|
617 |
+
"epoch": 0.17,
|
618 |
+
"learning_rate": 4.13610570000847e-05,
|
619 |
+
"loss": 3.3296,
|
620 |
+
"step": 10200
|
621 |
+
},
|
622 |
+
{
|
623 |
+
"epoch": 0.17,
|
624 |
+
"learning_rate": 4.127636148047768e-05,
|
625 |
+
"loss": 3.3406,
|
626 |
+
"step": 10300
|
627 |
+
},
|
628 |
+
{
|
629 |
+
"epoch": 0.18,
|
630 |
+
"learning_rate": 4.119166596087067e-05,
|
631 |
+
"loss": 3.3341,
|
632 |
+
"step": 10400
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.18,
|
636 |
+
"learning_rate": 4.110697044126366e-05,
|
637 |
+
"loss": 3.3396,
|
638 |
+
"step": 10500
|
639 |
+
},
|
640 |
+
{
|
641 |
+
"epoch": 0.18,
|
642 |
+
"learning_rate": 4.102227492165664e-05,
|
643 |
+
"loss": 3.333,
|
644 |
+
"step": 10600
|
645 |
+
},
|
646 |
+
{
|
647 |
+
"epoch": 0.18,
|
648 |
+
"learning_rate": 4.093757940204964e-05,
|
649 |
+
"loss": 3.3402,
|
650 |
+
"step": 10700
|
651 |
+
},
|
652 |
+
{
|
653 |
+
"epoch": 0.18,
|
654 |
+
"learning_rate": 4.085288388244262e-05,
|
655 |
+
"loss": 3.3197,
|
656 |
+
"step": 10800
|
657 |
+
},
|
658 |
+
{
|
659 |
+
"epoch": 0.18,
|
660 |
+
"learning_rate": 4.076818836283561e-05,
|
661 |
+
"loss": 3.3265,
|
662 |
+
"step": 10900
|
663 |
+
},
|
664 |
+
{
|
665 |
+
"epoch": 0.19,
|
666 |
+
"learning_rate": 4.068349284322859e-05,
|
667 |
+
"loss": 3.322,
|
668 |
+
"step": 11000
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"epoch": 0.19,
|
672 |
+
"learning_rate": 4.059879732362158e-05,
|
673 |
+
"loss": 3.3263,
|
674 |
+
"step": 11100
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 0.19,
|
678 |
+
"learning_rate": 4.051410180401457e-05,
|
679 |
+
"loss": 3.3376,
|
680 |
+
"step": 11200
|
681 |
+
},
|
682 |
+
{
|
683 |
+
"epoch": 0.19,
|
684 |
+
"learning_rate": 4.0429406284407554e-05,
|
685 |
+
"loss": 3.3221,
|
686 |
+
"step": 11300
|
687 |
+
},
|
688 |
+
{
|
689 |
+
"epoch": 0.19,
|
690 |
+
"learning_rate": 4.034471076480054e-05,
|
691 |
+
"loss": 3.3336,
|
692 |
+
"step": 11400
|
693 |
+
},
|
694 |
+
{
|
695 |
+
"epoch": 0.19,
|
696 |
+
"learning_rate": 4.026001524519353e-05,
|
697 |
+
"loss": 3.3214,
|
698 |
+
"step": 11500
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"epoch": 0.2,
|
702 |
+
"learning_rate": 4.017531972558652e-05,
|
703 |
+
"loss": 3.3162,
|
704 |
+
"step": 11600
|
705 |
+
},
|
706 |
+
{
|
707 |
+
"epoch": 0.2,
|
708 |
+
"learning_rate": 4.0090624205979505e-05,
|
709 |
+
"loss": 3.3146,
|
710 |
+
"step": 11700
|
711 |
+
},
|
712 |
+
{
|
713 |
+
"epoch": 0.2,
|
714 |
+
"learning_rate": 4.000592868637249e-05,
|
715 |
+
"loss": 3.313,
|
716 |
+
"step": 11800
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 0.2,
|
720 |
+
"learning_rate": 3.992123316676548e-05,
|
721 |
+
"loss": 3.3124,
|
722 |
+
"step": 11900
|
723 |
+
},
|
724 |
+
{
|
725 |
+
"epoch": 0.2,
|
726 |
+
"learning_rate": 3.9836537647158466e-05,
|
727 |
+
"loss": 3.3081,
|
728 |
+
"step": 12000
|
729 |
+
},
|
730 |
+
{
|
731 |
+
"epoch": 0.2,
|
732 |
+
"learning_rate": 3.9751842127551455e-05,
|
733 |
+
"loss": 3.3001,
|
734 |
+
"step": 12100
|
735 |
+
},
|
736 |
+
{
|
737 |
+
"epoch": 0.21,
|
738 |
+
"learning_rate": 3.9667146607944445e-05,
|
739 |
+
"loss": 3.3163,
|
740 |
+
"step": 12200
|
741 |
+
},
|
742 |
+
{
|
743 |
+
"epoch": 0.21,
|
744 |
+
"learning_rate": 3.958245108833743e-05,
|
745 |
+
"loss": 3.3065,
|
746 |
+
"step": 12300
|
747 |
+
},
|
748 |
+
{
|
749 |
+
"epoch": 0.21,
|
750 |
+
"learning_rate": 3.9497755568730416e-05,
|
751 |
+
"loss": 3.3106,
|
752 |
+
"step": 12400
|
753 |
+
},
|
754 |
+
{
|
755 |
+
"epoch": 0.21,
|
756 |
+
"learning_rate": 3.94130600491234e-05,
|
757 |
+
"loss": 3.3182,
|
758 |
+
"step": 12500
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 0.21,
|
762 |
+
"learning_rate": 3.9328364529516395e-05,
|
763 |
+
"loss": 3.3078,
|
764 |
+
"step": 12600
|
765 |
+
},
|
766 |
+
{
|
767 |
+
"epoch": 0.22,
|
768 |
+
"learning_rate": 3.924366900990938e-05,
|
769 |
+
"loss": 3.3173,
|
770 |
+
"step": 12700
|
771 |
+
},
|
772 |
+
{
|
773 |
+
"epoch": 0.22,
|
774 |
+
"learning_rate": 3.915897349030237e-05,
|
775 |
+
"loss": 3.3037,
|
776 |
+
"step": 12800
|
777 |
+
},
|
778 |
+
{
|
779 |
+
"epoch": 0.22,
|
780 |
+
"learning_rate": 3.907427797069535e-05,
|
781 |
+
"loss": 3.3128,
|
782 |
+
"step": 12900
|
783 |
+
},
|
784 |
+
{
|
785 |
+
"epoch": 0.22,
|
786 |
+
"learning_rate": 3.898958245108834e-05,
|
787 |
+
"loss": 3.3012,
|
788 |
+
"step": 13000
|
789 |
+
},
|
790 |
+
{
|
791 |
+
"epoch": 0.22,
|
792 |
+
"learning_rate": 3.890488693148133e-05,
|
793 |
+
"loss": 3.3003,
|
794 |
+
"step": 13100
|
795 |
+
},
|
796 |
+
{
|
797 |
+
"epoch": 0.22,
|
798 |
+
"learning_rate": 3.882019141187431e-05,
|
799 |
+
"loss": 3.3,
|
800 |
+
"step": 13200
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 0.23,
|
804 |
+
"learning_rate": 3.87354958922673e-05,
|
805 |
+
"loss": 3.3083,
|
806 |
+
"step": 13300
|
807 |
+
},
|
808 |
+
{
|
809 |
+
"epoch": 0.23,
|
810 |
+
"learning_rate": 3.865080037266029e-05,
|
811 |
+
"loss": 3.3119,
|
812 |
+
"step": 13400
|
813 |
+
},
|
814 |
+
{
|
815 |
+
"epoch": 0.23,
|
816 |
+
"learning_rate": 3.856610485305327e-05,
|
817 |
+
"loss": 3.3086,
|
818 |
+
"step": 13500
|
819 |
+
},
|
820 |
+
{
|
821 |
+
"epoch": 0.23,
|
822 |
+
"learning_rate": 3.848140933344626e-05,
|
823 |
+
"loss": 3.315,
|
824 |
+
"step": 13600
|
825 |
+
},
|
826 |
+
{
|
827 |
+
"epoch": 0.23,
|
828 |
+
"learning_rate": 3.839671381383925e-05,
|
829 |
+
"loss": 3.3085,
|
830 |
+
"step": 13700
|
831 |
+
},
|
832 |
+
{
|
833 |
+
"epoch": 0.23,
|
834 |
+
"learning_rate": 3.831201829423224e-05,
|
835 |
+
"loss": 3.302,
|
836 |
+
"step": 13800
|
837 |
+
},
|
838 |
+
{
|
839 |
+
"epoch": 0.24,
|
840 |
+
"learning_rate": 3.822732277462522e-05,
|
841 |
+
"loss": 3.3055,
|
842 |
+
"step": 13900
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 0.24,
|
846 |
+
"learning_rate": 3.814262725501821e-05,
|
847 |
+
"loss": 3.2976,
|
848 |
+
"step": 14000
|
849 |
+
},
|
850 |
+
{
|
851 |
+
"epoch": 0.24,
|
852 |
+
"learning_rate": 3.80579317354112e-05,
|
853 |
+
"loss": 3.3026,
|
854 |
+
"step": 14100
|
855 |
+
},
|
856 |
+
{
|
857 |
+
"epoch": 0.24,
|
858 |
+
"learning_rate": 3.7973236215804184e-05,
|
859 |
+
"loss": 3.2877,
|
860 |
+
"step": 14200
|
861 |
+
},
|
862 |
+
{
|
863 |
+
"epoch": 0.24,
|
864 |
+
"learning_rate": 3.788854069619717e-05,
|
865 |
+
"loss": 3.2788,
|
866 |
+
"step": 14300
|
867 |
+
},
|
868 |
+
{
|
869 |
+
"epoch": 0.24,
|
870 |
+
"learning_rate": 3.7803845176590156e-05,
|
871 |
+
"loss": 3.302,
|
872 |
+
"step": 14400
|
873 |
+
},
|
874 |
+
{
|
875 |
+
"epoch": 0.25,
|
876 |
+
"learning_rate": 3.771914965698315e-05,
|
877 |
+
"loss": 3.2954,
|
878 |
+
"step": 14500
|
879 |
+
},
|
880 |
+
{
|
881 |
+
"epoch": 0.25,
|
882 |
+
"learning_rate": 3.7634454137376135e-05,
|
883 |
+
"loss": 3.2901,
|
884 |
+
"step": 14600
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 0.25,
|
888 |
+
"learning_rate": 3.7549758617769124e-05,
|
889 |
+
"loss": 3.2979,
|
890 |
+
"step": 14700
|
891 |
+
},
|
892 |
+
{
|
893 |
+
"epoch": 0.25,
|
894 |
+
"learning_rate": 3.7465063098162106e-05,
|
895 |
+
"loss": 3.2923,
|
896 |
+
"step": 14800
|
897 |
+
},
|
898 |
+
{
|
899 |
+
"epoch": 0.25,
|
900 |
+
"learning_rate": 3.7380367578555096e-05,
|
901 |
+
"loss": 3.2981,
|
902 |
+
"step": 14900
|
903 |
+
},
|
904 |
+
{
|
905 |
+
"epoch": 0.25,
|
906 |
+
"learning_rate": 3.7295672058948085e-05,
|
907 |
+
"loss": 3.2964,
|
908 |
+
"step": 15000
|
909 |
+
},
|
910 |
+
{
|
911 |
+
"epoch": 0.26,
|
912 |
+
"learning_rate": 3.721097653934107e-05,
|
913 |
+
"loss": 3.2995,
|
914 |
+
"step": 15100
|
915 |
+
},
|
916 |
+
{
|
917 |
+
"epoch": 0.26,
|
918 |
+
"learning_rate": 3.7126281019734064e-05,
|
919 |
+
"loss": 3.2988,
|
920 |
+
"step": 15200
|
921 |
+
},
|
922 |
+
{
|
923 |
+
"epoch": 0.26,
|
924 |
+
"learning_rate": 3.7041585500127046e-05,
|
925 |
+
"loss": 3.2948,
|
926 |
+
"step": 15300
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 0.26,
|
930 |
+
"learning_rate": 3.695688998052003e-05,
|
931 |
+
"loss": 3.288,
|
932 |
+
"step": 15400
|
933 |
+
},
|
934 |
+
{
|
935 |
+
"epoch": 0.26,
|
936 |
+
"learning_rate": 3.687219446091302e-05,
|
937 |
+
"loss": 3.2881,
|
938 |
+
"step": 15500
|
939 |
+
},
|
940 |
+
{
|
941 |
+
"epoch": 0.26,
|
942 |
+
"learning_rate": 3.678749894130601e-05,
|
943 |
+
"loss": 3.2768,
|
944 |
+
"step": 15600
|
945 |
+
},
|
946 |
+
{
|
947 |
+
"epoch": 0.27,
|
948 |
+
"learning_rate": 3.6702803421699e-05,
|
949 |
+
"loss": 3.2781,
|
950 |
+
"step": 15700
|
951 |
+
},
|
952 |
+
{
|
953 |
+
"epoch": 0.27,
|
954 |
+
"learning_rate": 3.661810790209198e-05,
|
955 |
+
"loss": 3.2889,
|
956 |
+
"step": 15800
|
957 |
+
},
|
958 |
+
{
|
959 |
+
"epoch": 0.27,
|
960 |
+
"learning_rate": 3.653341238248497e-05,
|
961 |
+
"loss": 3.2875,
|
962 |
+
"step": 15900
|
963 |
+
},
|
964 |
+
{
|
965 |
+
"epoch": 0.27,
|
966 |
+
"learning_rate": 3.644871686287796e-05,
|
967 |
+
"loss": 3.2949,
|
968 |
+
"step": 16000
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 0.27,
|
972 |
+
"learning_rate": 3.636402134327094e-05,
|
973 |
+
"loss": 3.281,
|
974 |
+
"step": 16100
|
975 |
+
},
|
976 |
+
{
|
977 |
+
"epoch": 0.27,
|
978 |
+
"learning_rate": 3.627932582366393e-05,
|
979 |
+
"loss": 3.2902,
|
980 |
+
"step": 16200
|
981 |
+
},
|
982 |
+
{
|
983 |
+
"epoch": 0.28,
|
984 |
+
"learning_rate": 3.619463030405691e-05,
|
985 |
+
"loss": 3.2926,
|
986 |
+
"step": 16300
|
987 |
+
},
|
988 |
+
{
|
989 |
+
"epoch": 0.28,
|
990 |
+
"learning_rate": 3.610993478444991e-05,
|
991 |
+
"loss": 3.2912,
|
992 |
+
"step": 16400
|
993 |
+
},
|
994 |
+
{
|
995 |
+
"epoch": 0.28,
|
996 |
+
"learning_rate": 3.602523926484289e-05,
|
997 |
+
"loss": 3.2835,
|
998 |
+
"step": 16500
|
999 |
+
},
|
1000 |
+
{
|
1001 |
+
"epoch": 0.28,
|
1002 |
+
"learning_rate": 3.594054374523588e-05,
|
1003 |
+
"loss": 3.2712,
|
1004 |
+
"step": 16600
|
1005 |
+
},
|
1006 |
+
{
|
1007 |
+
"epoch": 0.28,
|
1008 |
+
"learning_rate": 3.585584822562887e-05,
|
1009 |
+
"loss": 3.2824,
|
1010 |
+
"step": 16700
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 0.28,
|
1014 |
+
"learning_rate": 3.577115270602185e-05,
|
1015 |
+
"loss": 3.2741,
|
1016 |
+
"step": 16800
|
1017 |
+
},
|
1018 |
+
{
|
1019 |
+
"epoch": 0.29,
|
1020 |
+
"learning_rate": 3.568645718641484e-05,
|
1021 |
+
"loss": 3.2763,
|
1022 |
+
"step": 16900
|
1023 |
+
},
|
1024 |
+
{
|
1025 |
+
"epoch": 0.29,
|
1026 |
+
"learning_rate": 3.5601761666807825e-05,
|
1027 |
+
"loss": 3.2611,
|
1028 |
+
"step": 17000
|
1029 |
+
},
|
1030 |
+
{
|
1031 |
+
"epoch": 0.29,
|
1032 |
+
"learning_rate": 3.5517066147200814e-05,
|
1033 |
+
"loss": 3.2923,
|
1034 |
+
"step": 17100
|
1035 |
+
},
|
1036 |
+
{
|
1037 |
+
"epoch": 0.29,
|
1038 |
+
"learning_rate": 3.54323706275938e-05,
|
1039 |
+
"loss": 3.2667,
|
1040 |
+
"step": 17200
|
1041 |
+
},
|
1042 |
+
{
|
1043 |
+
"epoch": 0.29,
|
1044 |
+
"learning_rate": 3.5347675107986786e-05,
|
1045 |
+
"loss": 3.2792,
|
1046 |
+
"step": 17300
|
1047 |
+
},
|
1048 |
+
{
|
1049 |
+
"epoch": 0.29,
|
1050 |
+
"learning_rate": 3.5262979588379775e-05,
|
1051 |
+
"loss": 3.2777,
|
1052 |
+
"step": 17400
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 0.3,
|
1056 |
+
"learning_rate": 3.5178284068772764e-05,
|
1057 |
+
"loss": 3.275,
|
1058 |
+
"step": 17500
|
1059 |
+
},
|
1060 |
+
{
|
1061 |
+
"epoch": 0.3,
|
1062 |
+
"learning_rate": 3.5093588549165754e-05,
|
1063 |
+
"loss": 3.286,
|
1064 |
+
"step": 17600
|
1065 |
+
},
|
1066 |
+
{
|
1067 |
+
"epoch": 0.3,
|
1068 |
+
"learning_rate": 3.5008893029558736e-05,
|
1069 |
+
"loss": 3.2784,
|
1070 |
+
"step": 17700
|
1071 |
+
},
|
1072 |
+
{
|
1073 |
+
"epoch": 0.3,
|
1074 |
+
"learning_rate": 3.4924197509951726e-05,
|
1075 |
+
"loss": 3.2707,
|
1076 |
+
"step": 17800
|
1077 |
+
},
|
1078 |
+
{
|
1079 |
+
"epoch": 0.3,
|
1080 |
+
"learning_rate": 3.4839501990344715e-05,
|
1081 |
+
"loss": 3.2591,
|
1082 |
+
"step": 17900
|
1083 |
+
},
|
1084 |
+
{
|
1085 |
+
"epoch": 0.3,
|
1086 |
+
"learning_rate": 3.47548064707377e-05,
|
1087 |
+
"loss": 3.268,
|
1088 |
+
"step": 18000
|
1089 |
+
},
|
1090 |
+
{
|
1091 |
+
"epoch": 0.31,
|
1092 |
+
"learning_rate": 3.467011095113069e-05,
|
1093 |
+
"loss": 3.2802,
|
1094 |
+
"step": 18100
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 0.31,
|
1098 |
+
"learning_rate": 3.4585415431523676e-05,
|
1099 |
+
"loss": 3.2788,
|
1100 |
+
"step": 18200
|
1101 |
+
},
|
1102 |
+
{
|
1103 |
+
"epoch": 0.31,
|
1104 |
+
"learning_rate": 3.4500719911916666e-05,
|
1105 |
+
"loss": 3.2516,
|
1106 |
+
"step": 18300
|
1107 |
+
},
|
1108 |
+
{
|
1109 |
+
"epoch": 0.31,
|
1110 |
+
"learning_rate": 3.441602439230965e-05,
|
1111 |
+
"loss": 3.2708,
|
1112 |
+
"step": 18400
|
1113 |
+
},
|
1114 |
+
{
|
1115 |
+
"epoch": 0.31,
|
1116 |
+
"learning_rate": 3.433132887270263e-05,
|
1117 |
+
"loss": 3.269,
|
1118 |
+
"step": 18500
|
1119 |
+
},
|
1120 |
+
{
|
1121 |
+
"epoch": 0.32,
|
1122 |
+
"learning_rate": 3.424663335309563e-05,
|
1123 |
+
"loss": 3.2583,
|
1124 |
+
"step": 18600
|
1125 |
+
},
|
1126 |
+
{
|
1127 |
+
"epoch": 0.32,
|
1128 |
+
"learning_rate": 3.416193783348861e-05,
|
1129 |
+
"loss": 3.2607,
|
1130 |
+
"step": 18700
|
1131 |
+
},
|
1132 |
+
{
|
1133 |
+
"epoch": 0.32,
|
1134 |
+
"learning_rate": 3.40772423138816e-05,
|
1135 |
+
"loss": 3.2738,
|
1136 |
+
"step": 18800
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 0.32,
|
1140 |
+
"learning_rate": 3.399254679427458e-05,
|
1141 |
+
"loss": 3.2747,
|
1142 |
+
"step": 18900
|
1143 |
+
},
|
1144 |
+
{
|
1145 |
+
"epoch": 0.32,
|
1146 |
+
"learning_rate": 3.390785127466757e-05,
|
1147 |
+
"loss": 3.2722,
|
1148 |
+
"step": 19000
|
1149 |
+
},
|
1150 |
+
{
|
1151 |
+
"epoch": 0.32,
|
1152 |
+
"learning_rate": 3.382315575506056e-05,
|
1153 |
+
"loss": 3.28,
|
1154 |
+
"step": 19100
|
1155 |
+
},
|
1156 |
+
{
|
1157 |
+
"epoch": 0.33,
|
1158 |
+
"learning_rate": 3.373846023545354e-05,
|
1159 |
+
"loss": 3.2739,
|
1160 |
+
"step": 19200
|
1161 |
+
},
|
1162 |
+
{
|
1163 |
+
"epoch": 0.33,
|
1164 |
+
"learning_rate": 3.365376471584653e-05,
|
1165 |
+
"loss": 3.2595,
|
1166 |
+
"step": 19300
|
1167 |
+
},
|
1168 |
+
{
|
1169 |
+
"epoch": 0.33,
|
1170 |
+
"learning_rate": 3.356906919623952e-05,
|
1171 |
+
"loss": 3.2672,
|
1172 |
+
"step": 19400
|
1173 |
+
},
|
1174 |
+
{
|
1175 |
+
"epoch": 0.33,
|
1176 |
+
"learning_rate": 3.348437367663251e-05,
|
1177 |
+
"loss": 3.2611,
|
1178 |
+
"step": 19500
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 0.33,
|
1182 |
+
"learning_rate": 3.339967815702549e-05,
|
1183 |
+
"loss": 3.2656,
|
1184 |
+
"step": 19600
|
1185 |
+
},
|
1186 |
+
{
|
1187 |
+
"epoch": 0.33,
|
1188 |
+
"learning_rate": 3.331498263741848e-05,
|
1189 |
+
"loss": 3.2765,
|
1190 |
+
"step": 19700
|
1191 |
+
},
|
1192 |
+
{
|
1193 |
+
"epoch": 0.34,
|
1194 |
+
"learning_rate": 3.323028711781147e-05,
|
1195 |
+
"loss": 3.2694,
|
1196 |
+
"step": 19800
|
1197 |
+
},
|
1198 |
+
{
|
1199 |
+
"epoch": 0.34,
|
1200 |
+
"learning_rate": 3.3145591598204454e-05,
|
1201 |
+
"loss": 3.2673,
|
1202 |
+
"step": 19900
|
1203 |
+
},
|
1204 |
+
{
|
1205 |
+
"epoch": 0.34,
|
1206 |
+
"learning_rate": 3.3060896078597444e-05,
|
1207 |
+
"loss": 3.2698,
|
1208 |
+
"step": 20000
|
1209 |
+
},
|
1210 |
+
{
|
1211 |
+
"epoch": 0.34,
|
1212 |
+
"learning_rate": 3.297620055899043e-05,
|
1213 |
+
"loss": 3.2659,
|
1214 |
+
"step": 20100
|
1215 |
+
},
|
1216 |
+
{
|
1217 |
+
"epoch": 0.34,
|
1218 |
+
"learning_rate": 3.2891505039383416e-05,
|
1219 |
+
"loss": 3.2683,
|
1220 |
+
"step": 20200
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"epoch": 0.34,
|
1224 |
+
"learning_rate": 3.2806809519776405e-05,
|
1225 |
+
"loss": 3.2527,
|
1226 |
+
"step": 20300
|
1227 |
+
},
|
1228 |
+
{
|
1229 |
+
"epoch": 0.35,
|
1230 |
+
"learning_rate": 3.272211400016939e-05,
|
1231 |
+
"loss": 3.2603,
|
1232 |
+
"step": 20400
|
1233 |
+
},
|
1234 |
+
{
|
1235 |
+
"epoch": 0.35,
|
1236 |
+
"learning_rate": 3.2637418480562384e-05,
|
1237 |
+
"loss": 3.2634,
|
1238 |
+
"step": 20500
|
1239 |
+
},
|
1240 |
+
{
|
1241 |
+
"epoch": 0.35,
|
1242 |
+
"learning_rate": 3.2552722960955366e-05,
|
1243 |
+
"loss": 3.2569,
|
1244 |
+
"step": 20600
|
1245 |
+
},
|
1246 |
+
{
|
1247 |
+
"epoch": 0.35,
|
1248 |
+
"learning_rate": 3.2468027441348356e-05,
|
1249 |
+
"loss": 3.2552,
|
1250 |
+
"step": 20700
|
1251 |
+
},
|
1252 |
+
{
|
1253 |
+
"epoch": 0.35,
|
1254 |
+
"learning_rate": 3.238333192174134e-05,
|
1255 |
+
"loss": 3.2618,
|
1256 |
+
"step": 20800
|
1257 |
+
},
|
1258 |
+
{
|
1259 |
+
"epoch": 0.35,
|
1260 |
+
"learning_rate": 3.229863640213433e-05,
|
1261 |
+
"loss": 3.2546,
|
1262 |
+
"step": 20900
|
1263 |
+
},
|
1264 |
+
{
|
1265 |
+
"epoch": 0.36,
|
1266 |
+
"learning_rate": 3.221394088252732e-05,
|
1267 |
+
"loss": 3.2551,
|
1268 |
+
"step": 21000
|
1269 |
+
},
|
1270 |
+
{
|
1271 |
+
"epoch": 0.36,
|
1272 |
+
"learning_rate": 3.21292453629203e-05,
|
1273 |
+
"loss": 3.2576,
|
1274 |
+
"step": 21100
|
1275 |
+
},
|
1276 |
+
{
|
1277 |
+
"epoch": 0.36,
|
1278 |
+
"learning_rate": 3.2044549843313296e-05,
|
1279 |
+
"loss": 3.2724,
|
1280 |
+
"step": 21200
|
1281 |
+
},
|
1282 |
+
{
|
1283 |
+
"epoch": 0.36,
|
1284 |
+
"learning_rate": 3.195985432370628e-05,
|
1285 |
+
"loss": 3.2538,
|
1286 |
+
"step": 21300
|
1287 |
+
},
|
1288 |
+
{
|
1289 |
+
"epoch": 0.36,
|
1290 |
+
"learning_rate": 3.187515880409927e-05,
|
1291 |
+
"loss": 3.2595,
|
1292 |
+
"step": 21400
|
1293 |
+
},
|
1294 |
+
{
|
1295 |
+
"epoch": 0.36,
|
1296 |
+
"learning_rate": 3.179046328449225e-05,
|
1297 |
+
"loss": 3.2421,
|
1298 |
+
"step": 21500
|
1299 |
+
},
|
1300 |
+
{
|
1301 |
+
"epoch": 0.37,
|
1302 |
+
"learning_rate": 3.170576776488524e-05,
|
1303 |
+
"loss": 3.2536,
|
1304 |
+
"step": 21600
|
1305 |
+
},
|
1306 |
+
{
|
1307 |
+
"epoch": 0.37,
|
1308 |
+
"learning_rate": 3.162107224527823e-05,
|
1309 |
+
"loss": 3.2726,
|
1310 |
+
"step": 21700
|
1311 |
+
},
|
1312 |
+
{
|
1313 |
+
"epoch": 0.37,
|
1314 |
+
"learning_rate": 3.153637672567121e-05,
|
1315 |
+
"loss": 3.2631,
|
1316 |
+
"step": 21800
|
1317 |
+
},
|
1318 |
+
{
|
1319 |
+
"epoch": 0.37,
|
1320 |
+
"learning_rate": 3.14516812060642e-05,
|
1321 |
+
"loss": 3.2627,
|
1322 |
+
"step": 21900
|
1323 |
+
},
|
1324 |
+
{
|
1325 |
+
"epoch": 0.37,
|
1326 |
+
"learning_rate": 3.136698568645719e-05,
|
1327 |
+
"loss": 3.2431,
|
1328 |
+
"step": 22000
|
1329 |
+
},
|
1330 |
+
{
|
1331 |
+
"epoch": 0.37,
|
1332 |
+
"learning_rate": 3.128229016685017e-05,
|
1333 |
+
"loss": 3.2649,
|
1334 |
+
"step": 22100
|
1335 |
+
},
|
1336 |
+
{
|
1337 |
+
"epoch": 0.38,
|
1338 |
+
"learning_rate": 3.119759464724316e-05,
|
1339 |
+
"loss": 3.2347,
|
1340 |
+
"step": 22200
|
1341 |
+
},
|
1342 |
+
{
|
1343 |
+
"epoch": 0.38,
|
1344 |
+
"learning_rate": 3.1112899127636144e-05,
|
1345 |
+
"loss": 3.2413,
|
1346 |
+
"step": 22300
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"epoch": 0.38,
|
1350 |
+
"learning_rate": 3.102820360802914e-05,
|
1351 |
+
"loss": 3.2626,
|
1352 |
+
"step": 22400
|
1353 |
+
},
|
1354 |
+
{
|
1355 |
+
"epoch": 0.38,
|
1356 |
+
"learning_rate": 3.094350808842212e-05,
|
1357 |
+
"loss": 3.2423,
|
1358 |
+
"step": 22500
|
1359 |
+
},
|
1360 |
+
{
|
1361 |
+
"epoch": 0.38,
|
1362 |
+
"learning_rate": 3.085881256881511e-05,
|
1363 |
+
"loss": 3.2457,
|
1364 |
+
"step": 22600
|
1365 |
+
},
|
1366 |
+
{
|
1367 |
+
"epoch": 0.38,
|
1368 |
+
"learning_rate": 3.07741170492081e-05,
|
1369 |
+
"loss": 3.239,
|
1370 |
+
"step": 22700
|
1371 |
+
},
|
1372 |
+
{
|
1373 |
+
"epoch": 0.39,
|
1374 |
+
"learning_rate": 3.0689421529601084e-05,
|
1375 |
+
"loss": 3.2517,
|
1376 |
+
"step": 22800
|
1377 |
+
},
|
1378 |
+
{
|
1379 |
+
"epoch": 0.39,
|
1380 |
+
"learning_rate": 3.0604726009994074e-05,
|
1381 |
+
"loss": 3.251,
|
1382 |
+
"step": 22900
|
1383 |
+
},
|
1384 |
+
{
|
1385 |
+
"epoch": 0.39,
|
1386 |
+
"learning_rate": 3.0520030490387056e-05,
|
1387 |
+
"loss": 3.2454,
|
1388 |
+
"step": 23000
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"epoch": 0.39,
|
1392 |
+
"learning_rate": 3.043533497078005e-05,
|
1393 |
+
"loss": 3.2455,
|
1394 |
+
"step": 23100
|
1395 |
+
},
|
1396 |
+
{
|
1397 |
+
"epoch": 0.39,
|
1398 |
+
"learning_rate": 3.0350639451173035e-05,
|
1399 |
+
"loss": 3.2572,
|
1400 |
+
"step": 23200
|
1401 |
+
},
|
1402 |
+
{
|
1403 |
+
"epoch": 0.39,
|
1404 |
+
"learning_rate": 3.026594393156602e-05,
|
1405 |
+
"loss": 3.2525,
|
1406 |
+
"step": 23300
|
1407 |
+
},
|
1408 |
+
{
|
1409 |
+
"epoch": 0.4,
|
1410 |
+
"learning_rate": 3.0181248411959007e-05,
|
1411 |
+
"loss": 3.2423,
|
1412 |
+
"step": 23400
|
1413 |
+
},
|
1414 |
+
{
|
1415 |
+
"epoch": 0.4,
|
1416 |
+
"learning_rate": 3.0096552892352e-05,
|
1417 |
+
"loss": 3.2602,
|
1418 |
+
"step": 23500
|
1419 |
+
},
|
1420 |
+
{
|
1421 |
+
"epoch": 0.4,
|
1422 |
+
"learning_rate": 3.0011857372744982e-05,
|
1423 |
+
"loss": 3.2442,
|
1424 |
+
"step": 23600
|
1425 |
+
},
|
1426 |
+
{
|
1427 |
+
"epoch": 0.4,
|
1428 |
+
"learning_rate": 2.9927161853137968e-05,
|
1429 |
+
"loss": 3.242,
|
1430 |
+
"step": 23700
|
1431 |
+
},
|
1432 |
+
{
|
1433 |
+
"epoch": 0.4,
|
1434 |
+
"learning_rate": 2.9842466333530954e-05,
|
1435 |
+
"loss": 3.2454,
|
1436 |
+
"step": 23800
|
1437 |
+
},
|
1438 |
+
{
|
1439 |
+
"epoch": 0.4,
|
1440 |
+
"learning_rate": 2.9757770813923947e-05,
|
1441 |
+
"loss": 3.2343,
|
1442 |
+
"step": 23900
|
1443 |
+
},
|
1444 |
+
{
|
1445 |
+
"epoch": 0.41,
|
1446 |
+
"learning_rate": 2.9673075294316933e-05,
|
1447 |
+
"loss": 3.2436,
|
1448 |
+
"step": 24000
|
1449 |
+
},
|
1450 |
+
{
|
1451 |
+
"epoch": 0.41,
|
1452 |
+
"learning_rate": 2.958837977470992e-05,
|
1453 |
+
"loss": 3.237,
|
1454 |
+
"step": 24100
|
1455 |
+
},
|
1456 |
+
{
|
1457 |
+
"epoch": 0.41,
|
1458 |
+
"learning_rate": 2.9503684255102908e-05,
|
1459 |
+
"loss": 3.2552,
|
1460 |
+
"step": 24200
|
1461 |
+
},
|
1462 |
+
{
|
1463 |
+
"epoch": 0.41,
|
1464 |
+
"learning_rate": 2.9418988735495894e-05,
|
1465 |
+
"loss": 3.2511,
|
1466 |
+
"step": 24300
|
1467 |
+
},
|
1468 |
+
{
|
1469 |
+
"epoch": 0.41,
|
1470 |
+
"learning_rate": 2.933429321588888e-05,
|
1471 |
+
"loss": 3.2352,
|
1472 |
+
"step": 24400
|
1473 |
+
},
|
1474 |
+
{
|
1475 |
+
"epoch": 0.42,
|
1476 |
+
"learning_rate": 2.9249597696281866e-05,
|
1477 |
+
"loss": 3.2356,
|
1478 |
+
"step": 24500
|
1479 |
+
},
|
1480 |
+
{
|
1481 |
+
"epoch": 0.42,
|
1482 |
+
"learning_rate": 2.916490217667486e-05,
|
1483 |
+
"loss": 3.2547,
|
1484 |
+
"step": 24600
|
1485 |
+
},
|
1486 |
+
{
|
1487 |
+
"epoch": 0.42,
|
1488 |
+
"learning_rate": 2.9080206657067845e-05,
|
1489 |
+
"loss": 3.2578,
|
1490 |
+
"step": 24700
|
1491 |
+
},
|
1492 |
+
{
|
1493 |
+
"epoch": 0.42,
|
1494 |
+
"learning_rate": 2.899551113746083e-05,
|
1495 |
+
"loss": 3.2299,
|
1496 |
+
"step": 24800
|
1497 |
+
},
|
1498 |
+
{
|
1499 |
+
"epoch": 0.42,
|
1500 |
+
"learning_rate": 2.8910815617853816e-05,
|
1501 |
+
"loss": 3.2308,
|
1502 |
+
"step": 24900
|
1503 |
+
},
|
1504 |
+
{
|
1505 |
+
"epoch": 0.42,
|
1506 |
+
"learning_rate": 2.8826120098246806e-05,
|
1507 |
+
"loss": 3.231,
|
1508 |
+
"step": 25000
|
1509 |
+
},
|
1510 |
+
{
|
1511 |
+
"epoch": 0.43,
|
1512 |
+
"learning_rate": 2.8741424578639792e-05,
|
1513 |
+
"loss": 3.244,
|
1514 |
+
"step": 25100
|
1515 |
+
},
|
1516 |
+
{
|
1517 |
+
"epoch": 0.43,
|
1518 |
+
"learning_rate": 2.8656729059032778e-05,
|
1519 |
+
"loss": 3.2523,
|
1520 |
+
"step": 25200
|
1521 |
+
},
|
1522 |
+
{
|
1523 |
+
"epoch": 0.43,
|
1524 |
+
"learning_rate": 2.8572033539425764e-05,
|
1525 |
+
"loss": 3.2394,
|
1526 |
+
"step": 25300
|
1527 |
+
},
|
1528 |
+
{
|
1529 |
+
"epoch": 0.43,
|
1530 |
+
"learning_rate": 2.8487338019818753e-05,
|
1531 |
+
"loss": 3.2434,
|
1532 |
+
"step": 25400
|
1533 |
+
},
|
1534 |
+
{
|
1535 |
+
"epoch": 0.43,
|
1536 |
+
"learning_rate": 2.840264250021174e-05,
|
1537 |
+
"loss": 3.2412,
|
1538 |
+
"step": 25500
|
1539 |
+
},
|
1540 |
+
{
|
1541 |
+
"epoch": 0.43,
|
1542 |
+
"learning_rate": 2.8317946980604725e-05,
|
1543 |
+
"loss": 3.2396,
|
1544 |
+
"step": 25600
|
1545 |
+
},
|
1546 |
+
{
|
1547 |
+
"epoch": 0.44,
|
1548 |
+
"learning_rate": 2.8233251460997718e-05,
|
1549 |
+
"loss": 3.2516,
|
1550 |
+
"step": 25700
|
1551 |
+
},
|
1552 |
+
{
|
1553 |
+
"epoch": 0.44,
|
1554 |
+
"learning_rate": 2.8148555941390704e-05,
|
1555 |
+
"loss": 3.221,
|
1556 |
+
"step": 25800
|
1557 |
+
},
|
1558 |
+
{
|
1559 |
+
"epoch": 0.44,
|
1560 |
+
"learning_rate": 2.806386042178369e-05,
|
1561 |
+
"loss": 3.2295,
|
1562 |
+
"step": 25900
|
1563 |
+
},
|
1564 |
+
{
|
1565 |
+
"epoch": 0.44,
|
1566 |
+
"learning_rate": 2.7979164902176675e-05,
|
1567 |
+
"loss": 3.236,
|
1568 |
+
"step": 26000
|
1569 |
+
},
|
1570 |
+
{
|
1571 |
+
"epoch": 0.44,
|
1572 |
+
"learning_rate": 2.7894469382569665e-05,
|
1573 |
+
"loss": 3.2444,
|
1574 |
+
"step": 26100
|
1575 |
+
},
|
1576 |
+
{
|
1577 |
+
"epoch": 0.44,
|
1578 |
+
"learning_rate": 2.780977386296265e-05,
|
1579 |
+
"loss": 3.2383,
|
1580 |
+
"step": 26200
|
1581 |
+
},
|
1582 |
+
{
|
1583 |
+
"epoch": 0.45,
|
1584 |
+
"learning_rate": 2.7725078343355637e-05,
|
1585 |
+
"loss": 3.2314,
|
1586 |
+
"step": 26300
|
1587 |
+
},
|
1588 |
+
{
|
1589 |
+
"epoch": 0.45,
|
1590 |
+
"learning_rate": 2.7640382823748623e-05,
|
1591 |
+
"loss": 3.2459,
|
1592 |
+
"step": 26400
|
1593 |
+
},
|
1594 |
+
{
|
1595 |
+
"epoch": 0.45,
|
1596 |
+
"learning_rate": 2.7555687304141615e-05,
|
1597 |
+
"loss": 3.2391,
|
1598 |
+
"step": 26500
|
1599 |
+
},
|
1600 |
+
{
|
1601 |
+
"epoch": 0.45,
|
1602 |
+
"learning_rate": 2.74709917845346e-05,
|
1603 |
+
"loss": 3.2394,
|
1604 |
+
"step": 26600
|
1605 |
+
},
|
1606 |
+
{
|
1607 |
+
"epoch": 0.45,
|
1608 |
+
"learning_rate": 2.7386296264927584e-05,
|
1609 |
+
"loss": 3.2304,
|
1610 |
+
"step": 26700
|
1611 |
+
},
|
1612 |
+
{
|
1613 |
+
"epoch": 0.45,
|
1614 |
+
"learning_rate": 2.730160074532057e-05,
|
1615 |
+
"loss": 3.2376,
|
1616 |
+
"step": 26800
|
1617 |
+
},
|
1618 |
+
{
|
1619 |
+
"epoch": 0.46,
|
1620 |
+
"learning_rate": 2.7216905225713563e-05,
|
1621 |
+
"loss": 3.2229,
|
1622 |
+
"step": 26900
|
1623 |
+
},
|
1624 |
+
{
|
1625 |
+
"epoch": 0.46,
|
1626 |
+
"learning_rate": 2.713220970610655e-05,
|
1627 |
+
"loss": 3.2386,
|
1628 |
+
"step": 27000
|
1629 |
+
},
|
1630 |
+
{
|
1631 |
+
"epoch": 0.46,
|
1632 |
+
"learning_rate": 2.7047514186499535e-05,
|
1633 |
+
"loss": 3.2269,
|
1634 |
+
"step": 27100
|
1635 |
+
},
|
1636 |
+
{
|
1637 |
+
"epoch": 0.46,
|
1638 |
+
"learning_rate": 2.6962818666892524e-05,
|
1639 |
+
"loss": 3.2357,
|
1640 |
+
"step": 27200
|
1641 |
+
},
|
1642 |
+
{
|
1643 |
+
"epoch": 0.46,
|
1644 |
+
"learning_rate": 2.687812314728551e-05,
|
1645 |
+
"loss": 3.2211,
|
1646 |
+
"step": 27300
|
1647 |
+
},
|
1648 |
+
{
|
1649 |
+
"epoch": 0.46,
|
1650 |
+
"learning_rate": 2.6793427627678496e-05,
|
1651 |
+
"loss": 3.2306,
|
1652 |
+
"step": 27400
|
1653 |
+
},
|
1654 |
+
{
|
1655 |
+
"epoch": 0.47,
|
1656 |
+
"learning_rate": 2.6708732108071482e-05,
|
1657 |
+
"loss": 3.246,
|
1658 |
+
"step": 27500
|
1659 |
+
},
|
1660 |
+
{
|
1661 |
+
"epoch": 0.47,
|
1662 |
+
"learning_rate": 2.6624036588464474e-05,
|
1663 |
+
"loss": 3.2277,
|
1664 |
+
"step": 27600
|
1665 |
+
},
|
1666 |
+
{
|
1667 |
+
"epoch": 0.47,
|
1668 |
+
"learning_rate": 2.653934106885746e-05,
|
1669 |
+
"loss": 3.2324,
|
1670 |
+
"step": 27700
|
1671 |
+
},
|
1672 |
+
{
|
1673 |
+
"epoch": 0.47,
|
1674 |
+
"learning_rate": 2.6454645549250446e-05,
|
1675 |
+
"loss": 3.2292,
|
1676 |
+
"step": 27800
|
1677 |
+
},
|
1678 |
+
{
|
1679 |
+
"epoch": 0.47,
|
1680 |
+
"learning_rate": 2.6369950029643432e-05,
|
1681 |
+
"loss": 3.2308,
|
1682 |
+
"step": 27900
|
1683 |
+
},
|
1684 |
+
{
|
1685 |
+
"epoch": 0.47,
|
1686 |
+
"learning_rate": 2.628525451003642e-05,
|
1687 |
+
"loss": 3.2243,
|
1688 |
+
"step": 28000
|
1689 |
+
},
|
1690 |
+
{
|
1691 |
+
"epoch": 0.48,
|
1692 |
+
"learning_rate": 2.6200558990429408e-05,
|
1693 |
+
"loss": 3.2343,
|
1694 |
+
"step": 28100
|
1695 |
+
},
|
1696 |
+
{
|
1697 |
+
"epoch": 0.48,
|
1698 |
+
"learning_rate": 2.6115863470822394e-05,
|
1699 |
+
"loss": 3.237,
|
1700 |
+
"step": 28200
|
1701 |
+
},
|
1702 |
+
{
|
1703 |
+
"epoch": 0.48,
|
1704 |
+
"learning_rate": 2.603116795121538e-05,
|
1705 |
+
"loss": 3.2222,
|
1706 |
+
"step": 28300
|
1707 |
+
},
|
1708 |
+
{
|
1709 |
+
"epoch": 0.48,
|
1710 |
+
"learning_rate": 2.5946472431608372e-05,
|
1711 |
+
"loss": 3.234,
|
1712 |
+
"step": 28400
|
1713 |
+
},
|
1714 |
+
{
|
1715 |
+
"epoch": 0.48,
|
1716 |
+
"learning_rate": 2.5861776912001355e-05,
|
1717 |
+
"loss": 3.2234,
|
1718 |
+
"step": 28500
|
1719 |
+
},
|
1720 |
+
{
|
1721 |
+
"epoch": 0.48,
|
1722 |
+
"learning_rate": 2.577708139239434e-05,
|
1723 |
+
"loss": 3.2333,
|
1724 |
+
"step": 28600
|
1725 |
+
},
|
1726 |
+
{
|
1727 |
+
"epoch": 0.49,
|
1728 |
+
"learning_rate": 2.5692385872787333e-05,
|
1729 |
+
"loss": 3.2221,
|
1730 |
+
"step": 28700
|
1731 |
+
},
|
1732 |
+
{
|
1733 |
+
"epoch": 0.49,
|
1734 |
+
"learning_rate": 2.560769035318032e-05,
|
1735 |
+
"loss": 3.2205,
|
1736 |
+
"step": 28800
|
1737 |
+
},
|
1738 |
+
{
|
1739 |
+
"epoch": 0.49,
|
1740 |
+
"learning_rate": 2.5522994833573305e-05,
|
1741 |
+
"loss": 3.2371,
|
1742 |
+
"step": 28900
|
1743 |
+
},
|
1744 |
+
{
|
1745 |
+
"epoch": 0.49,
|
1746 |
+
"learning_rate": 2.543829931396629e-05,
|
1747 |
+
"loss": 3.2169,
|
1748 |
+
"step": 29000
|
1749 |
+
},
|
1750 |
+
{
|
1751 |
+
"epoch": 0.49,
|
1752 |
+
"learning_rate": 2.535360379435928e-05,
|
1753 |
+
"loss": 3.2225,
|
1754 |
+
"step": 29100
|
1755 |
+
},
|
1756 |
+
{
|
1757 |
+
"epoch": 0.49,
|
1758 |
+
"learning_rate": 2.5268908274752267e-05,
|
1759 |
+
"loss": 3.2218,
|
1760 |
+
"step": 29200
|
1761 |
+
},
|
1762 |
+
{
|
1763 |
+
"epoch": 0.5,
|
1764 |
+
"learning_rate": 2.5184212755145253e-05,
|
1765 |
+
"loss": 3.2285,
|
1766 |
+
"step": 29300
|
1767 |
+
},
|
1768 |
+
{
|
1769 |
+
"epoch": 0.5,
|
1770 |
+
"learning_rate": 2.509951723553824e-05,
|
1771 |
+
"loss": 3.2374,
|
1772 |
+
"step": 29400
|
1773 |
+
},
|
1774 |
+
{
|
1775 |
+
"epoch": 0.5,
|
1776 |
+
"learning_rate": 2.501482171593123e-05,
|
1777 |
+
"loss": 3.2276,
|
1778 |
+
"step": 29500
|
1779 |
+
},
|
1780 |
+
{
|
1781 |
+
"epoch": 0.5,
|
1782 |
+
"learning_rate": 2.4930126196324217e-05,
|
1783 |
+
"loss": 3.2242,
|
1784 |
+
"step": 29600
|
1785 |
+
},
|
1786 |
+
{
|
1787 |
+
"epoch": 0.5,
|
1788 |
+
"learning_rate": 2.4845430676717203e-05,
|
1789 |
+
"loss": 3.2227,
|
1790 |
+
"step": 29700
|
1791 |
+
},
|
1792 |
+
{
|
1793 |
+
"epoch": 0.5,
|
1794 |
+
"learning_rate": 2.476073515711019e-05,
|
1795 |
+
"loss": 3.2058,
|
1796 |
+
"step": 29800
|
1797 |
+
},
|
1798 |
+
{
|
1799 |
+
"epoch": 0.51,
|
1800 |
+
"learning_rate": 2.4676039637503175e-05,
|
1801 |
+
"loss": 3.2233,
|
1802 |
+
"step": 29900
|
1803 |
+
},
|
1804 |
+
{
|
1805 |
+
"epoch": 0.51,
|
1806 |
+
"learning_rate": 2.4591344117896164e-05,
|
1807 |
+
"loss": 3.2197,
|
1808 |
+
"step": 30000
|
1809 |
+
},
|
1810 |
+
{
|
1811 |
+
"epoch": 0.51,
|
1812 |
+
"learning_rate": 2.4506648598289154e-05,
|
1813 |
+
"loss": 3.2137,
|
1814 |
+
"step": 30100
|
1815 |
+
},
|
1816 |
+
{
|
1817 |
+
"epoch": 0.51,
|
1818 |
+
"learning_rate": 2.442195307868214e-05,
|
1819 |
+
"loss": 3.2201,
|
1820 |
+
"step": 30200
|
1821 |
+
},
|
1822 |
+
{
|
1823 |
+
"epoch": 0.51,
|
1824 |
+
"learning_rate": 2.4337257559075126e-05,
|
1825 |
+
"loss": 3.2254,
|
1826 |
+
"step": 30300
|
1827 |
+
},
|
1828 |
+
{
|
1829 |
+
"epoch": 0.51,
|
1830 |
+
"learning_rate": 2.425256203946811e-05,
|
1831 |
+
"loss": 3.2302,
|
1832 |
+
"step": 30400
|
1833 |
+
},
|
1834 |
+
{
|
1835 |
+
"epoch": 0.52,
|
1836 |
+
"learning_rate": 2.41678665198611e-05,
|
1837 |
+
"loss": 3.2154,
|
1838 |
+
"step": 30500
|
1839 |
+
},
|
1840 |
+
{
|
1841 |
+
"epoch": 0.52,
|
1842 |
+
"learning_rate": 2.4083171000254087e-05,
|
1843 |
+
"loss": 3.2012,
|
1844 |
+
"step": 30600
|
1845 |
+
},
|
1846 |
+
{
|
1847 |
+
"epoch": 0.52,
|
1848 |
+
"learning_rate": 2.3998475480647076e-05,
|
1849 |
+
"loss": 3.2228,
|
1850 |
+
"step": 30700
|
1851 |
+
},
|
1852 |
+
{
|
1853 |
+
"epoch": 0.52,
|
1854 |
+
"learning_rate": 2.3913779961040062e-05,
|
1855 |
+
"loss": 3.2212,
|
1856 |
+
"step": 30800
|
1857 |
+
},
|
1858 |
+
{
|
1859 |
+
"epoch": 0.52,
|
1860 |
+
"learning_rate": 2.382908444143305e-05,
|
1861 |
+
"loss": 3.222,
|
1862 |
+
"step": 30900
|
1863 |
+
},
|
1864 |
+
{
|
1865 |
+
"epoch": 0.53,
|
1866 |
+
"learning_rate": 2.3744388921826034e-05,
|
1867 |
+
"loss": 3.215,
|
1868 |
+
"step": 31000
|
1869 |
+
},
|
1870 |
+
{
|
1871 |
+
"epoch": 0.53,
|
1872 |
+
"learning_rate": 2.3659693402219023e-05,
|
1873 |
+
"loss": 3.2235,
|
1874 |
+
"step": 31100
|
1875 |
+
},
|
1876 |
+
{
|
1877 |
+
"epoch": 0.53,
|
1878 |
+
"learning_rate": 2.357499788261201e-05,
|
1879 |
+
"loss": 3.2163,
|
1880 |
+
"step": 31200
|
1881 |
+
},
|
1882 |
+
{
|
1883 |
+
"epoch": 0.53,
|
1884 |
+
"learning_rate": 2.3490302363005e-05,
|
1885 |
+
"loss": 3.2061,
|
1886 |
+
"step": 31300
|
1887 |
+
},
|
1888 |
+
{
|
1889 |
+
"epoch": 0.53,
|
1890 |
+
"learning_rate": 2.3405606843397985e-05,
|
1891 |
+
"loss": 3.2124,
|
1892 |
+
"step": 31400
|
1893 |
+
},
|
1894 |
+
{
|
1895 |
+
"epoch": 0.53,
|
1896 |
+
"learning_rate": 2.3320911323790974e-05,
|
1897 |
+
"loss": 3.217,
|
1898 |
+
"step": 31500
|
1899 |
+
},
|
1900 |
+
{
|
1901 |
+
"epoch": 0.54,
|
1902 |
+
"learning_rate": 2.323621580418396e-05,
|
1903 |
+
"loss": 3.2221,
|
1904 |
+
"step": 31600
|
1905 |
+
},
|
1906 |
+
{
|
1907 |
+
"epoch": 0.54,
|
1908 |
+
"learning_rate": 2.3151520284576946e-05,
|
1909 |
+
"loss": 3.2334,
|
1910 |
+
"step": 31700
|
1911 |
+
},
|
1912 |
+
{
|
1913 |
+
"epoch": 0.54,
|
1914 |
+
"learning_rate": 2.3066824764969935e-05,
|
1915 |
+
"loss": 3.2209,
|
1916 |
+
"step": 31800
|
1917 |
+
},
|
1918 |
+
{
|
1919 |
+
"epoch": 0.54,
|
1920 |
+
"learning_rate": 2.298212924536292e-05,
|
1921 |
+
"loss": 3.2292,
|
1922 |
+
"step": 31900
|
1923 |
+
},
|
1924 |
+
{
|
1925 |
+
"epoch": 0.54,
|
1926 |
+
"learning_rate": 2.289743372575591e-05,
|
1927 |
+
"loss": 3.2192,
|
1928 |
+
"step": 32000
|
1929 |
+
},
|
1930 |
+
{
|
1931 |
+
"epoch": 0.54,
|
1932 |
+
"learning_rate": 2.2812738206148897e-05,
|
1933 |
+
"loss": 3.2103,
|
1934 |
+
"step": 32100
|
1935 |
+
},
|
1936 |
+
{
|
1937 |
+
"epoch": 0.55,
|
1938 |
+
"learning_rate": 2.2728042686541883e-05,
|
1939 |
+
"loss": 3.2196,
|
1940 |
+
"step": 32200
|
1941 |
+
},
|
1942 |
+
{
|
1943 |
+
"epoch": 0.55,
|
1944 |
+
"learning_rate": 2.264334716693487e-05,
|
1945 |
+
"loss": 3.2,
|
1946 |
+
"step": 32300
|
1947 |
+
},
|
1948 |
+
{
|
1949 |
+
"epoch": 0.55,
|
1950 |
+
"learning_rate": 2.2558651647327858e-05,
|
1951 |
+
"loss": 3.2053,
|
1952 |
+
"step": 32400
|
1953 |
+
},
|
1954 |
+
{
|
1955 |
+
"epoch": 0.55,
|
1956 |
+
"learning_rate": 2.2473956127720844e-05,
|
1957 |
+
"loss": 3.2075,
|
1958 |
+
"step": 32500
|
1959 |
+
},
|
1960 |
+
{
|
1961 |
+
"epoch": 0.55,
|
1962 |
+
"learning_rate": 2.2389260608113833e-05,
|
1963 |
+
"loss": 3.2158,
|
1964 |
+
"step": 32600
|
1965 |
+
},
|
1966 |
+
{
|
1967 |
+
"epoch": 0.55,
|
1968 |
+
"learning_rate": 2.230456508850682e-05,
|
1969 |
+
"loss": 3.2149,
|
1970 |
+
"step": 32700
|
1971 |
+
},
|
1972 |
+
{
|
1973 |
+
"epoch": 0.56,
|
1974 |
+
"learning_rate": 2.2219869568899805e-05,
|
1975 |
+
"loss": 3.2082,
|
1976 |
+
"step": 32800
|
1977 |
+
},
|
1978 |
+
{
|
1979 |
+
"epoch": 0.56,
|
1980 |
+
"learning_rate": 2.213517404929279e-05,
|
1981 |
+
"loss": 3.2068,
|
1982 |
+
"step": 32900
|
1983 |
+
},
|
1984 |
+
{
|
1985 |
+
"epoch": 0.56,
|
1986 |
+
"learning_rate": 2.205047852968578e-05,
|
1987 |
+
"loss": 3.2078,
|
1988 |
+
"step": 33000
|
1989 |
+
},
|
1990 |
+
{
|
1991 |
+
"epoch": 0.56,
|
1992 |
+
"learning_rate": 2.196578301007877e-05,
|
1993 |
+
"loss": 3.2165,
|
1994 |
+
"step": 33100
|
1995 |
+
},
|
1996 |
+
{
|
1997 |
+
"epoch": 0.56,
|
1998 |
+
"learning_rate": 2.1881087490471756e-05,
|
1999 |
+
"loss": 3.2233,
|
2000 |
+
"step": 33200
|
2001 |
+
},
|
2002 |
+
{
|
2003 |
+
"epoch": 0.56,
|
2004 |
+
"learning_rate": 2.1796391970864745e-05,
|
2005 |
+
"loss": 3.2029,
|
2006 |
+
"step": 33300
|
2007 |
+
},
|
2008 |
+
{
|
2009 |
+
"epoch": 0.57,
|
2010 |
+
"learning_rate": 2.171169645125773e-05,
|
2011 |
+
"loss": 3.2079,
|
2012 |
+
"step": 33400
|
2013 |
+
},
|
2014 |
+
{
|
2015 |
+
"epoch": 0.57,
|
2016 |
+
"learning_rate": 2.1627000931650717e-05,
|
2017 |
+
"loss": 3.2147,
|
2018 |
+
"step": 33500
|
2019 |
+
},
|
2020 |
+
{
|
2021 |
+
"epoch": 0.57,
|
2022 |
+
"learning_rate": 2.1542305412043703e-05,
|
2023 |
+
"loss": 3.2175,
|
2024 |
+
"step": 33600
|
2025 |
+
},
|
2026 |
+
{
|
2027 |
+
"epoch": 0.57,
|
2028 |
+
"learning_rate": 2.1457609892436692e-05,
|
2029 |
+
"loss": 3.2167,
|
2030 |
+
"step": 33700
|
2031 |
+
},
|
2032 |
+
{
|
2033 |
+
"epoch": 0.57,
|
2034 |
+
"learning_rate": 2.1372914372829678e-05,
|
2035 |
+
"loss": 3.1926,
|
2036 |
+
"step": 33800
|
2037 |
+
},
|
2038 |
+
{
|
2039 |
+
"epoch": 0.57,
|
2040 |
+
"learning_rate": 2.1288218853222667e-05,
|
2041 |
+
"loss": 3.198,
|
2042 |
+
"step": 33900
|
2043 |
+
},
|
2044 |
+
{
|
2045 |
+
"epoch": 0.58,
|
2046 |
+
"learning_rate": 2.1203523333615653e-05,
|
2047 |
+
"loss": 3.2076,
|
2048 |
+
"step": 34000
|
2049 |
+
},
|
2050 |
+
{
|
2051 |
+
"epoch": 0.58,
|
2052 |
+
"learning_rate": 2.111882781400864e-05,
|
2053 |
+
"loss": 3.2119,
|
2054 |
+
"step": 34100
|
2055 |
+
},
|
2056 |
+
{
|
2057 |
+
"epoch": 0.58,
|
2058 |
+
"learning_rate": 2.1034132294401625e-05,
|
2059 |
+
"loss": 3.2017,
|
2060 |
+
"step": 34200
|
2061 |
+
},
|
2062 |
+
{
|
2063 |
+
"epoch": 0.58,
|
2064 |
+
"learning_rate": 2.0949436774794615e-05,
|
2065 |
+
"loss": 3.2065,
|
2066 |
+
"step": 34300
|
2067 |
+
},
|
2068 |
+
{
|
2069 |
+
"epoch": 0.58,
|
2070 |
+
"learning_rate": 2.08647412551876e-05,
|
2071 |
+
"loss": 3.1921,
|
2072 |
+
"step": 34400
|
2073 |
+
},
|
2074 |
+
{
|
2075 |
+
"epoch": 0.58,
|
2076 |
+
"learning_rate": 2.078004573558059e-05,
|
2077 |
+
"loss": 3.2301,
|
2078 |
+
"step": 34500
|
2079 |
+
},
|
2080 |
+
{
|
2081 |
+
"epoch": 0.59,
|
2082 |
+
"learning_rate": 2.0695350215973576e-05,
|
2083 |
+
"loss": 3.2104,
|
2084 |
+
"step": 34600
|
2085 |
+
},
|
2086 |
+
{
|
2087 |
+
"epoch": 0.59,
|
2088 |
+
"learning_rate": 2.0610654696366562e-05,
|
2089 |
+
"loss": 3.1944,
|
2090 |
+
"step": 34700
|
2091 |
+
},
|
2092 |
+
{
|
2093 |
+
"epoch": 0.59,
|
2094 |
+
"learning_rate": 2.052595917675955e-05,
|
2095 |
+
"loss": 3.2097,
|
2096 |
+
"step": 34800
|
2097 |
+
},
|
2098 |
+
{
|
2099 |
+
"epoch": 0.59,
|
2100 |
+
"learning_rate": 2.0441263657152537e-05,
|
2101 |
+
"loss": 3.1961,
|
2102 |
+
"step": 34900
|
2103 |
+
},
|
2104 |
+
{
|
2105 |
+
"epoch": 0.59,
|
2106 |
+
"learning_rate": 2.0356568137545526e-05,
|
2107 |
+
"loss": 3.2053,
|
2108 |
+
"step": 35000
|
2109 |
+
},
|
2110 |
+
{
|
2111 |
+
"epoch": 0.59,
|
2112 |
+
"learning_rate": 2.0271872617938512e-05,
|
2113 |
+
"loss": 3.1948,
|
2114 |
+
"step": 35100
|
2115 |
+
},
|
2116 |
+
{
|
2117 |
+
"epoch": 0.6,
|
2118 |
+
"learning_rate": 2.01871770983315e-05,
|
2119 |
+
"loss": 3.2027,
|
2120 |
+
"step": 35200
|
2121 |
+
},
|
2122 |
+
{
|
2123 |
+
"epoch": 0.6,
|
2124 |
+
"learning_rate": 2.0102481578724484e-05,
|
2125 |
+
"loss": 3.2068,
|
2126 |
+
"step": 35300
|
2127 |
+
},
|
2128 |
+
{
|
2129 |
+
"epoch": 0.6,
|
2130 |
+
"learning_rate": 2.0017786059117474e-05,
|
2131 |
+
"loss": 3.2119,
|
2132 |
+
"step": 35400
|
2133 |
+
},
|
2134 |
+
{
|
2135 |
+
"epoch": 0.6,
|
2136 |
+
"learning_rate": 1.993309053951046e-05,
|
2137 |
+
"loss": 3.1933,
|
2138 |
+
"step": 35500
|
2139 |
+
},
|
2140 |
+
{
|
2141 |
+
"epoch": 0.6,
|
2142 |
+
"learning_rate": 1.984839501990345e-05,
|
2143 |
+
"loss": 3.1979,
|
2144 |
+
"step": 35600
|
2145 |
+
},
|
2146 |
+
{
|
2147 |
+
"epoch": 0.6,
|
2148 |
+
"learning_rate": 1.9763699500296435e-05,
|
2149 |
+
"loss": 3.2042,
|
2150 |
+
"step": 35700
|
2151 |
+
},
|
2152 |
+
{
|
2153 |
+
"epoch": 0.61,
|
2154 |
+
"learning_rate": 1.9679003980689424e-05,
|
2155 |
+
"loss": 3.1985,
|
2156 |
+
"step": 35800
|
2157 |
+
},
|
2158 |
+
{
|
2159 |
+
"epoch": 0.61,
|
2160 |
+
"learning_rate": 1.9594308461082407e-05,
|
2161 |
+
"loss": 3.2023,
|
2162 |
+
"step": 35900
|
2163 |
+
},
|
2164 |
+
{
|
2165 |
+
"epoch": 0.61,
|
2166 |
+
"learning_rate": 1.9509612941475396e-05,
|
2167 |
+
"loss": 3.2023,
|
2168 |
+
"step": 36000
|
2169 |
+
},
|
2170 |
+
{
|
2171 |
+
"epoch": 0.61,
|
2172 |
+
"learning_rate": 1.9424917421868386e-05,
|
2173 |
+
"loss": 3.2116,
|
2174 |
+
"step": 36100
|
2175 |
+
},
|
2176 |
+
{
|
2177 |
+
"epoch": 0.61,
|
2178 |
+
"learning_rate": 1.934022190226137e-05,
|
2179 |
+
"loss": 3.1966,
|
2180 |
+
"step": 36200
|
2181 |
+
},
|
2182 |
+
{
|
2183 |
+
"epoch": 0.61,
|
2184 |
+
"learning_rate": 1.925552638265436e-05,
|
2185 |
+
"loss": 3.1994,
|
2186 |
+
"step": 36300
|
2187 |
+
},
|
2188 |
+
{
|
2189 |
+
"epoch": 0.62,
|
2190 |
+
"learning_rate": 1.9170830863047347e-05,
|
2191 |
+
"loss": 3.1967,
|
2192 |
+
"step": 36400
|
2193 |
+
},
|
2194 |
+
{
|
2195 |
+
"epoch": 0.62,
|
2196 |
+
"learning_rate": 1.9086135343440333e-05,
|
2197 |
+
"loss": 3.2149,
|
2198 |
+
"step": 36500
|
2199 |
+
},
|
2200 |
+
{
|
2201 |
+
"epoch": 0.62,
|
2202 |
+
"learning_rate": 1.900143982383332e-05,
|
2203 |
+
"loss": 3.202,
|
2204 |
+
"step": 36600
|
2205 |
+
},
|
2206 |
+
{
|
2207 |
+
"epoch": 0.62,
|
2208 |
+
"learning_rate": 1.8916744304226308e-05,
|
2209 |
+
"loss": 3.2015,
|
2210 |
+
"step": 36700
|
2211 |
+
},
|
2212 |
+
{
|
2213 |
+
"epoch": 0.62,
|
2214 |
+
"learning_rate": 1.8832048784619294e-05,
|
2215 |
+
"loss": 3.2088,
|
2216 |
+
"step": 36800
|
2217 |
+
},
|
2218 |
+
{
|
2219 |
+
"epoch": 0.63,
|
2220 |
+
"learning_rate": 1.8747353265012283e-05,
|
2221 |
+
"loss": 3.1967,
|
2222 |
+
"step": 36900
|
2223 |
+
},
|
2224 |
+
{
|
2225 |
+
"epoch": 0.63,
|
2226 |
+
"learning_rate": 1.866265774540527e-05,
|
2227 |
+
"loss": 3.2063,
|
2228 |
+
"step": 37000
|
2229 |
+
},
|
2230 |
+
{
|
2231 |
+
"epoch": 0.63,
|
2232 |
+
"learning_rate": 1.8577962225798255e-05,
|
2233 |
+
"loss": 3.2164,
|
2234 |
+
"step": 37100
|
2235 |
+
},
|
2236 |
+
{
|
2237 |
+
"epoch": 0.63,
|
2238 |
+
"learning_rate": 1.849326670619124e-05,
|
2239 |
+
"loss": 3.177,
|
2240 |
+
"step": 37200
|
2241 |
+
},
|
2242 |
+
{
|
2243 |
+
"epoch": 0.63,
|
2244 |
+
"learning_rate": 1.840857118658423e-05,
|
2245 |
+
"loss": 3.1965,
|
2246 |
+
"step": 37300
|
2247 |
+
},
|
2248 |
+
{
|
2249 |
+
"epoch": 0.63,
|
2250 |
+
"learning_rate": 1.8323875666977216e-05,
|
2251 |
+
"loss": 3.1846,
|
2252 |
+
"step": 37400
|
2253 |
+
},
|
2254 |
+
{
|
2255 |
+
"epoch": 0.64,
|
2256 |
+
"learning_rate": 1.8239180147370206e-05,
|
2257 |
+
"loss": 3.1875,
|
2258 |
+
"step": 37500
|
2259 |
+
},
|
2260 |
+
{
|
2261 |
+
"epoch": 0.64,
|
2262 |
+
"learning_rate": 1.8154484627763192e-05,
|
2263 |
+
"loss": 3.2023,
|
2264 |
+
"step": 37600
|
2265 |
+
},
|
2266 |
+
{
|
2267 |
+
"epoch": 0.64,
|
2268 |
+
"learning_rate": 1.8069789108156178e-05,
|
2269 |
+
"loss": 3.203,
|
2270 |
+
"step": 37700
|
2271 |
+
},
|
2272 |
+
{
|
2273 |
+
"epoch": 0.64,
|
2274 |
+
"learning_rate": 1.7985093588549167e-05,
|
2275 |
+
"loss": 3.1991,
|
2276 |
+
"step": 37800
|
2277 |
+
},
|
2278 |
+
{
|
2279 |
+
"epoch": 0.64,
|
2280 |
+
"learning_rate": 1.7900398068942153e-05,
|
2281 |
+
"loss": 3.2008,
|
2282 |
+
"step": 37900
|
2283 |
+
},
|
2284 |
+
{
|
2285 |
+
"epoch": 0.64,
|
2286 |
+
"learning_rate": 1.7815702549335142e-05,
|
2287 |
+
"loss": 3.1955,
|
2288 |
+
"step": 38000
|
2289 |
+
},
|
2290 |
+
{
|
2291 |
+
"epoch": 0.65,
|
2292 |
+
"learning_rate": 1.7731007029728128e-05,
|
2293 |
+
"loss": 3.1963,
|
2294 |
+
"step": 38100
|
2295 |
+
},
|
2296 |
+
{
|
2297 |
+
"epoch": 0.65,
|
2298 |
+
"learning_rate": 1.7646311510121118e-05,
|
2299 |
+
"loss": 3.1964,
|
2300 |
+
"step": 38200
|
2301 |
+
},
|
2302 |
+
{
|
2303 |
+
"epoch": 0.65,
|
2304 |
+
"learning_rate": 1.7561615990514104e-05,
|
2305 |
+
"loss": 3.1881,
|
2306 |
+
"step": 38300
|
2307 |
+
},
|
2308 |
+
{
|
2309 |
+
"epoch": 0.65,
|
2310 |
+
"learning_rate": 1.747692047090709e-05,
|
2311 |
+
"loss": 3.1924,
|
2312 |
+
"step": 38400
|
2313 |
+
},
|
2314 |
+
{
|
2315 |
+
"epoch": 0.65,
|
2316 |
+
"learning_rate": 1.7392224951300075e-05,
|
2317 |
+
"loss": 3.1953,
|
2318 |
+
"step": 38500
|
2319 |
+
},
|
2320 |
+
{
|
2321 |
+
"epoch": 0.65,
|
2322 |
+
"learning_rate": 1.7307529431693065e-05,
|
2323 |
+
"loss": 3.1933,
|
2324 |
+
"step": 38600
|
2325 |
+
},
|
2326 |
+
{
|
2327 |
+
"epoch": 0.66,
|
2328 |
+
"learning_rate": 1.722283391208605e-05,
|
2329 |
+
"loss": 3.1976,
|
2330 |
+
"step": 38700
|
2331 |
+
},
|
2332 |
+
{
|
2333 |
+
"epoch": 0.66,
|
2334 |
+
"learning_rate": 1.713813839247904e-05,
|
2335 |
+
"loss": 3.1868,
|
2336 |
+
"step": 38800
|
2337 |
+
},
|
2338 |
+
{
|
2339 |
+
"epoch": 0.66,
|
2340 |
+
"learning_rate": 1.7053442872872026e-05,
|
2341 |
+
"loss": 3.191,
|
2342 |
+
"step": 38900
|
2343 |
+
},
|
2344 |
+
{
|
2345 |
+
"epoch": 0.66,
|
2346 |
+
"learning_rate": 1.6968747353265012e-05,
|
2347 |
+
"loss": 3.1914,
|
2348 |
+
"step": 39000
|
2349 |
+
},
|
2350 |
+
{
|
2351 |
+
"epoch": 0.66,
|
2352 |
+
"learning_rate": 1.6884051833657998e-05,
|
2353 |
+
"loss": 3.1831,
|
2354 |
+
"step": 39100
|
2355 |
+
},
|
2356 |
+
{
|
2357 |
+
"epoch": 0.66,
|
2358 |
+
"learning_rate": 1.6799356314050987e-05,
|
2359 |
+
"loss": 3.2032,
|
2360 |
+
"step": 39200
|
2361 |
+
},
|
2362 |
+
{
|
2363 |
+
"epoch": 0.67,
|
2364 |
+
"learning_rate": 1.6714660794443977e-05,
|
2365 |
+
"loss": 3.2008,
|
2366 |
+
"step": 39300
|
2367 |
+
},
|
2368 |
+
{
|
2369 |
+
"epoch": 0.67,
|
2370 |
+
"learning_rate": 1.6629965274836963e-05,
|
2371 |
+
"loss": 3.191,
|
2372 |
+
"step": 39400
|
2373 |
+
},
|
2374 |
+
{
|
2375 |
+
"epoch": 0.67,
|
2376 |
+
"learning_rate": 1.654526975522995e-05,
|
2377 |
+
"loss": 3.1821,
|
2378 |
+
"step": 39500
|
2379 |
+
},
|
2380 |
+
{
|
2381 |
+
"epoch": 0.67,
|
2382 |
+
"learning_rate": 1.6460574235622935e-05,
|
2383 |
+
"loss": 3.1753,
|
2384 |
+
"step": 39600
|
2385 |
+
},
|
2386 |
+
{
|
2387 |
+
"epoch": 0.67,
|
2388 |
+
"learning_rate": 1.6375878716015924e-05,
|
2389 |
+
"loss": 3.1947,
|
2390 |
+
"step": 39700
|
2391 |
+
},
|
2392 |
+
{
|
2393 |
+
"epoch": 0.67,
|
2394 |
+
"learning_rate": 1.629118319640891e-05,
|
2395 |
+
"loss": 3.1815,
|
2396 |
+
"step": 39800
|
2397 |
+
},
|
2398 |
+
{
|
2399 |
+
"epoch": 0.68,
|
2400 |
+
"learning_rate": 1.62064876768019e-05,
|
2401 |
+
"loss": 3.1991,
|
2402 |
+
"step": 39900
|
2403 |
+
},
|
2404 |
+
{
|
2405 |
+
"epoch": 0.68,
|
2406 |
+
"learning_rate": 1.6121792157194885e-05,
|
2407 |
+
"loss": 3.1912,
|
2408 |
+
"step": 40000
|
2409 |
+
},
|
2410 |
+
{
|
2411 |
+
"epoch": 0.68,
|
2412 |
+
"learning_rate": 1.6037096637587874e-05,
|
2413 |
+
"loss": 3.1912,
|
2414 |
+
"step": 40100
|
2415 |
+
},
|
2416 |
+
{
|
2417 |
+
"epoch": 0.68,
|
2418 |
+
"learning_rate": 1.5952401117980857e-05,
|
2419 |
+
"loss": 3.1865,
|
2420 |
+
"step": 40200
|
2421 |
+
},
|
2422 |
+
{
|
2423 |
+
"epoch": 0.68,
|
2424 |
+
"learning_rate": 1.5867705598373846e-05,
|
2425 |
+
"loss": 3.1933,
|
2426 |
+
"step": 40300
|
2427 |
+
},
|
2428 |
+
{
|
2429 |
+
"epoch": 0.68,
|
2430 |
+
"learning_rate": 1.5783010078766832e-05,
|
2431 |
+
"loss": 3.2054,
|
2432 |
+
"step": 40400
|
2433 |
+
},
|
2434 |
+
{
|
2435 |
+
"epoch": 0.69,
|
2436 |
+
"learning_rate": 1.569831455915982e-05,
|
2437 |
+
"loss": 3.187,
|
2438 |
+
"step": 40500
|
2439 |
+
},
|
2440 |
+
{
|
2441 |
+
"epoch": 0.69,
|
2442 |
+
"learning_rate": 1.5613619039552808e-05,
|
2443 |
+
"loss": 3.207,
|
2444 |
+
"step": 40600
|
2445 |
+
},
|
2446 |
+
{
|
2447 |
+
"epoch": 0.69,
|
2448 |
+
"learning_rate": 1.5528923519945797e-05,
|
2449 |
+
"loss": 3.1933,
|
2450 |
+
"step": 40700
|
2451 |
+
},
|
2452 |
+
{
|
2453 |
+
"epoch": 0.69,
|
2454 |
+
"learning_rate": 1.5444228000338783e-05,
|
2455 |
+
"loss": 3.1906,
|
2456 |
+
"step": 40800
|
2457 |
+
},
|
2458 |
+
{
|
2459 |
+
"epoch": 0.69,
|
2460 |
+
"learning_rate": 1.535953248073177e-05,
|
2461 |
+
"loss": 3.1899,
|
2462 |
+
"step": 40900
|
2463 |
+
},
|
2464 |
+
{
|
2465 |
+
"epoch": 0.69,
|
2466 |
+
"learning_rate": 1.5274836961124758e-05,
|
2467 |
+
"loss": 3.1834,
|
2468 |
+
"step": 41000
|
2469 |
+
},
|
2470 |
+
{
|
2471 |
+
"epoch": 0.7,
|
2472 |
+
"learning_rate": 1.5190141441517744e-05,
|
2473 |
+
"loss": 3.1793,
|
2474 |
+
"step": 41100
|
2475 |
+
},
|
2476 |
+
{
|
2477 |
+
"epoch": 0.7,
|
2478 |
+
"learning_rate": 1.5105445921910732e-05,
|
2479 |
+
"loss": 3.1903,
|
2480 |
+
"step": 41200
|
2481 |
+
},
|
2482 |
+
{
|
2483 |
+
"epoch": 0.7,
|
2484 |
+
"learning_rate": 1.5020750402303718e-05,
|
2485 |
+
"loss": 3.1749,
|
2486 |
+
"step": 41300
|
2487 |
+
},
|
2488 |
+
{
|
2489 |
+
"epoch": 0.7,
|
2490 |
+
"learning_rate": 1.4936054882696707e-05,
|
2491 |
+
"loss": 3.2057,
|
2492 |
+
"step": 41400
|
2493 |
+
},
|
2494 |
+
{
|
2495 |
+
"epoch": 0.7,
|
2496 |
+
"learning_rate": 1.4851359363089693e-05,
|
2497 |
+
"loss": 3.1976,
|
2498 |
+
"step": 41500
|
2499 |
+
},
|
2500 |
+
{
|
2501 |
+
"epoch": 0.7,
|
2502 |
+
"learning_rate": 1.476666384348268e-05,
|
2503 |
+
"loss": 3.1903,
|
2504 |
+
"step": 41600
|
2505 |
+
},
|
2506 |
+
{
|
2507 |
+
"epoch": 0.71,
|
2508 |
+
"learning_rate": 1.4681968323875667e-05,
|
2509 |
+
"loss": 3.1933,
|
2510 |
+
"step": 41700
|
2511 |
+
},
|
2512 |
+
{
|
2513 |
+
"epoch": 0.71,
|
2514 |
+
"learning_rate": 1.4597272804268656e-05,
|
2515 |
+
"loss": 3.1893,
|
2516 |
+
"step": 41800
|
2517 |
+
},
|
2518 |
+
{
|
2519 |
+
"epoch": 0.71,
|
2520 |
+
"learning_rate": 1.451257728466164e-05,
|
2521 |
+
"loss": 3.1758,
|
2522 |
+
"step": 41900
|
2523 |
+
},
|
2524 |
+
{
|
2525 |
+
"epoch": 0.71,
|
2526 |
+
"learning_rate": 1.442788176505463e-05,
|
2527 |
+
"loss": 3.1862,
|
2528 |
+
"step": 42000
|
2529 |
+
},
|
2530 |
+
{
|
2531 |
+
"epoch": 0.71,
|
2532 |
+
"learning_rate": 1.4343186245447616e-05,
|
2533 |
+
"loss": 3.1919,
|
2534 |
+
"step": 42100
|
2535 |
+
},
|
2536 |
+
{
|
2537 |
+
"epoch": 0.71,
|
2538 |
+
"learning_rate": 1.4258490725840603e-05,
|
2539 |
+
"loss": 3.1743,
|
2540 |
+
"step": 42200
|
2541 |
+
},
|
2542 |
+
{
|
2543 |
+
"epoch": 0.72,
|
2544 |
+
"learning_rate": 1.4173795206233593e-05,
|
2545 |
+
"loss": 3.1762,
|
2546 |
+
"step": 42300
|
2547 |
+
},
|
2548 |
+
{
|
2549 |
+
"epoch": 0.72,
|
2550 |
+
"learning_rate": 1.4089099686626578e-05,
|
2551 |
+
"loss": 3.1939,
|
2552 |
+
"step": 42400
|
2553 |
+
},
|
2554 |
+
{
|
2555 |
+
"epoch": 0.72,
|
2556 |
+
"learning_rate": 1.4004404167019566e-05,
|
2557 |
+
"loss": 3.1814,
|
2558 |
+
"step": 42500
|
2559 |
+
},
|
2560 |
+
{
|
2561 |
+
"epoch": 0.72,
|
2562 |
+
"learning_rate": 1.3919708647412552e-05,
|
2563 |
+
"loss": 3.1925,
|
2564 |
+
"step": 42600
|
2565 |
+
},
|
2566 |
+
{
|
2567 |
+
"epoch": 0.72,
|
2568 |
+
"learning_rate": 1.3835013127805541e-05,
|
2569 |
+
"loss": 3.1708,
|
2570 |
+
"step": 42700
|
2571 |
+
},
|
2572 |
+
{
|
2573 |
+
"epoch": 0.72,
|
2574 |
+
"learning_rate": 1.3750317608198526e-05,
|
2575 |
+
"loss": 3.1635,
|
2576 |
+
"step": 42800
|
2577 |
+
},
|
2578 |
+
{
|
2579 |
+
"epoch": 0.73,
|
2580 |
+
"learning_rate": 1.3665622088591515e-05,
|
2581 |
+
"loss": 3.1827,
|
2582 |
+
"step": 42900
|
2583 |
+
},
|
2584 |
+
{
|
2585 |
+
"epoch": 0.73,
|
2586 |
+
"learning_rate": 1.3580926568984501e-05,
|
2587 |
+
"loss": 3.1721,
|
2588 |
+
"step": 43000
|
2589 |
+
},
|
2590 |
+
{
|
2591 |
+
"epoch": 0.73,
|
2592 |
+
"learning_rate": 1.3496231049377489e-05,
|
2593 |
+
"loss": 3.1853,
|
2594 |
+
"step": 43100
|
2595 |
+
},
|
2596 |
+
{
|
2597 |
+
"epoch": 0.73,
|
2598 |
+
"learning_rate": 1.3411535529770475e-05,
|
2599 |
+
"loss": 3.1747,
|
2600 |
+
"step": 43200
|
2601 |
+
},
|
2602 |
+
{
|
2603 |
+
"epoch": 0.73,
|
2604 |
+
"learning_rate": 1.3326840010163464e-05,
|
2605 |
+
"loss": 3.1799,
|
2606 |
+
"step": 43300
|
2607 |
+
},
|
2608 |
+
{
|
2609 |
+
"epoch": 0.74,
|
2610 |
+
"learning_rate": 1.3242144490556448e-05,
|
2611 |
+
"loss": 3.1843,
|
2612 |
+
"step": 43400
|
2613 |
+
},
|
2614 |
+
{
|
2615 |
+
"epoch": 0.74,
|
2616 |
+
"learning_rate": 1.3157448970949438e-05,
|
2617 |
+
"loss": 3.1985,
|
2618 |
+
"step": 43500
|
2619 |
+
},
|
2620 |
+
{
|
2621 |
+
"epoch": 0.74,
|
2622 |
+
"learning_rate": 1.3072753451342423e-05,
|
2623 |
+
"loss": 3.1907,
|
2624 |
+
"step": 43600
|
2625 |
+
},
|
2626 |
+
{
|
2627 |
+
"epoch": 0.74,
|
2628 |
+
"learning_rate": 1.2988057931735411e-05,
|
2629 |
+
"loss": 3.1804,
|
2630 |
+
"step": 43700
|
2631 |
+
},
|
2632 |
+
{
|
2633 |
+
"epoch": 0.74,
|
2634 |
+
"learning_rate": 1.29033624121284e-05,
|
2635 |
+
"loss": 3.1787,
|
2636 |
+
"step": 43800
|
2637 |
+
},
|
2638 |
+
{
|
2639 |
+
"epoch": 0.74,
|
2640 |
+
"learning_rate": 1.2818666892521386e-05,
|
2641 |
+
"loss": 3.181,
|
2642 |
+
"step": 43900
|
2643 |
+
},
|
2644 |
+
{
|
2645 |
+
"epoch": 0.75,
|
2646 |
+
"learning_rate": 1.2733971372914374e-05,
|
2647 |
+
"loss": 3.1677,
|
2648 |
+
"step": 44000
|
2649 |
+
},
|
2650 |
+
{
|
2651 |
+
"epoch": 0.75,
|
2652 |
+
"learning_rate": 1.264927585330736e-05,
|
2653 |
+
"loss": 3.1876,
|
2654 |
+
"step": 44100
|
2655 |
+
},
|
2656 |
+
{
|
2657 |
+
"epoch": 0.75,
|
2658 |
+
"learning_rate": 1.256458033370035e-05,
|
2659 |
+
"loss": 3.1952,
|
2660 |
+
"step": 44200
|
2661 |
+
},
|
2662 |
+
{
|
2663 |
+
"epoch": 0.75,
|
2664 |
+
"learning_rate": 1.2479884814093334e-05,
|
2665 |
+
"loss": 3.1881,
|
2666 |
+
"step": 44300
|
2667 |
+
},
|
2668 |
+
{
|
2669 |
+
"epoch": 0.75,
|
2670 |
+
"learning_rate": 1.2395189294486323e-05,
|
2671 |
+
"loss": 3.1789,
|
2672 |
+
"step": 44400
|
2673 |
+
},
|
2674 |
+
{
|
2675 |
+
"epoch": 0.75,
|
2676 |
+
"learning_rate": 1.231049377487931e-05,
|
2677 |
+
"loss": 3.177,
|
2678 |
+
"step": 44500
|
2679 |
+
},
|
2680 |
+
{
|
2681 |
+
"epoch": 0.76,
|
2682 |
+
"learning_rate": 1.2225798255272297e-05,
|
2683 |
+
"loss": 3.1733,
|
2684 |
+
"step": 44600
|
2685 |
+
},
|
2686 |
+
{
|
2687 |
+
"epoch": 0.76,
|
2688 |
+
"learning_rate": 1.2141102735665284e-05,
|
2689 |
+
"loss": 3.17,
|
2690 |
+
"step": 44700
|
2691 |
+
},
|
2692 |
+
{
|
2693 |
+
"epoch": 0.76,
|
2694 |
+
"learning_rate": 1.2056407216058272e-05,
|
2695 |
+
"loss": 3.1849,
|
2696 |
+
"step": 44800
|
2697 |
+
},
|
2698 |
+
{
|
2699 |
+
"epoch": 0.76,
|
2700 |
+
"learning_rate": 1.1971711696451258e-05,
|
2701 |
+
"loss": 3.1875,
|
2702 |
+
"step": 44900
|
2703 |
+
},
|
2704 |
+
{
|
2705 |
+
"epoch": 0.76,
|
2706 |
+
"learning_rate": 1.1887016176844245e-05,
|
2707 |
+
"loss": 3.1659,
|
2708 |
+
"step": 45000
|
2709 |
+
},
|
2710 |
+
{
|
2711 |
+
"epoch": 0.76,
|
2712 |
+
"learning_rate": 1.1802320657237233e-05,
|
2713 |
+
"loss": 3.1877,
|
2714 |
+
"step": 45100
|
2715 |
+
},
|
2716 |
+
{
|
2717 |
+
"epoch": 0.77,
|
2718 |
+
"learning_rate": 1.1717625137630219e-05,
|
2719 |
+
"loss": 3.1808,
|
2720 |
+
"step": 45200
|
2721 |
+
},
|
2722 |
+
{
|
2723 |
+
"epoch": 0.77,
|
2724 |
+
"learning_rate": 1.1632929618023207e-05,
|
2725 |
+
"loss": 3.1831,
|
2726 |
+
"step": 45300
|
2727 |
+
},
|
2728 |
+
{
|
2729 |
+
"epoch": 0.77,
|
2730 |
+
"learning_rate": 1.1548234098416194e-05,
|
2731 |
+
"loss": 3.1852,
|
2732 |
+
"step": 45400
|
2733 |
+
},
|
2734 |
+
{
|
2735 |
+
"epoch": 0.77,
|
2736 |
+
"learning_rate": 1.1463538578809182e-05,
|
2737 |
+
"loss": 3.1855,
|
2738 |
+
"step": 45500
|
2739 |
+
},
|
2740 |
+
{
|
2741 |
+
"epoch": 0.77,
|
2742 |
+
"learning_rate": 1.1378843059202168e-05,
|
2743 |
+
"loss": 3.1771,
|
2744 |
+
"step": 45600
|
2745 |
+
},
|
2746 |
+
{
|
2747 |
+
"epoch": 0.77,
|
2748 |
+
"learning_rate": 1.1294147539595156e-05,
|
2749 |
+
"loss": 3.1826,
|
2750 |
+
"step": 45700
|
2751 |
+
},
|
2752 |
+
{
|
2753 |
+
"epoch": 0.78,
|
2754 |
+
"learning_rate": 1.1209452019988143e-05,
|
2755 |
+
"loss": 3.1634,
|
2756 |
+
"step": 45800
|
2757 |
+
},
|
2758 |
+
{
|
2759 |
+
"epoch": 0.78,
|
2760 |
+
"learning_rate": 1.1124756500381131e-05,
|
2761 |
+
"loss": 3.1812,
|
2762 |
+
"step": 45900
|
2763 |
+
},
|
2764 |
+
{
|
2765 |
+
"epoch": 0.78,
|
2766 |
+
"learning_rate": 1.1040060980774119e-05,
|
2767 |
+
"loss": 3.1836,
|
2768 |
+
"step": 46000
|
2769 |
+
},
|
2770 |
+
{
|
2771 |
+
"epoch": 0.78,
|
2772 |
+
"learning_rate": 1.0955365461167104e-05,
|
2773 |
+
"loss": 3.1879,
|
2774 |
+
"step": 46100
|
2775 |
+
},
|
2776 |
+
{
|
2777 |
+
"epoch": 0.78,
|
2778 |
+
"learning_rate": 1.0870669941560092e-05,
|
2779 |
+
"loss": 3.1714,
|
2780 |
+
"step": 46200
|
2781 |
+
},
|
2782 |
+
{
|
2783 |
+
"epoch": 0.78,
|
2784 |
+
"learning_rate": 1.078597442195308e-05,
|
2785 |
+
"loss": 3.1747,
|
2786 |
+
"step": 46300
|
2787 |
+
},
|
2788 |
+
{
|
2789 |
+
"epoch": 0.79,
|
2790 |
+
"learning_rate": 1.0701278902346067e-05,
|
2791 |
+
"loss": 3.1795,
|
2792 |
+
"step": 46400
|
2793 |
+
},
|
2794 |
+
{
|
2795 |
+
"epoch": 0.79,
|
2796 |
+
"learning_rate": 1.0616583382739053e-05,
|
2797 |
+
"loss": 3.1776,
|
2798 |
+
"step": 46500
|
2799 |
+
},
|
2800 |
+
{
|
2801 |
+
"epoch": 0.79,
|
2802 |
+
"learning_rate": 1.0531887863132041e-05,
|
2803 |
+
"loss": 3.1687,
|
2804 |
+
"step": 46600
|
2805 |
+
},
|
2806 |
+
{
|
2807 |
+
"epoch": 0.79,
|
2808 |
+
"learning_rate": 1.0447192343525029e-05,
|
2809 |
+
"loss": 3.1842,
|
2810 |
+
"step": 46700
|
2811 |
+
},
|
2812 |
+
{
|
2813 |
+
"epoch": 0.79,
|
2814 |
+
"learning_rate": 1.0362496823918015e-05,
|
2815 |
+
"loss": 3.1702,
|
2816 |
+
"step": 46800
|
2817 |
+
},
|
2818 |
+
{
|
2819 |
+
"epoch": 0.79,
|
2820 |
+
"learning_rate": 1.0277801304311002e-05,
|
2821 |
+
"loss": 3.1601,
|
2822 |
+
"step": 46900
|
2823 |
+
},
|
2824 |
+
{
|
2825 |
+
"epoch": 0.8,
|
2826 |
+
"learning_rate": 1.019310578470399e-05,
|
2827 |
+
"loss": 3.1822,
|
2828 |
+
"step": 47000
|
2829 |
+
},
|
2830 |
+
{
|
2831 |
+
"epoch": 0.8,
|
2832 |
+
"learning_rate": 1.0108410265096976e-05,
|
2833 |
+
"loss": 3.1776,
|
2834 |
+
"step": 47100
|
2835 |
+
},
|
2836 |
+
{
|
2837 |
+
"epoch": 0.8,
|
2838 |
+
"learning_rate": 1.0023714745489964e-05,
|
2839 |
+
"loss": 3.1768,
|
2840 |
+
"step": 47200
|
2841 |
+
},
|
2842 |
+
{
|
2843 |
+
"epoch": 0.8,
|
2844 |
+
"learning_rate": 9.939019225882951e-06,
|
2845 |
+
"loss": 3.1709,
|
2846 |
+
"step": 47300
|
2847 |
+
},
|
2848 |
+
{
|
2849 |
+
"epoch": 0.8,
|
2850 |
+
"learning_rate": 9.854323706275939e-06,
|
2851 |
+
"loss": 3.172,
|
2852 |
+
"step": 47400
|
2853 |
+
},
|
2854 |
+
{
|
2855 |
+
"epoch": 0.8,
|
2856 |
+
"learning_rate": 9.769628186668926e-06,
|
2857 |
+
"loss": 3.1755,
|
2858 |
+
"step": 47500
|
2859 |
+
},
|
2860 |
+
{
|
2861 |
+
"epoch": 0.81,
|
2862 |
+
"learning_rate": 9.684932667061914e-06,
|
2863 |
+
"loss": 3.1717,
|
2864 |
+
"step": 47600
|
2865 |
+
},
|
2866 |
+
{
|
2867 |
+
"epoch": 0.81,
|
2868 |
+
"learning_rate": 9.6002371474549e-06,
|
2869 |
+
"loss": 3.1659,
|
2870 |
+
"step": 47700
|
2871 |
+
},
|
2872 |
+
{
|
2873 |
+
"epoch": 0.81,
|
2874 |
+
"learning_rate": 9.515541627847888e-06,
|
2875 |
+
"loss": 3.1713,
|
2876 |
+
"step": 47800
|
2877 |
+
},
|
2878 |
+
{
|
2879 |
+
"epoch": 0.81,
|
2880 |
+
"learning_rate": 9.430846108240875e-06,
|
2881 |
+
"loss": 3.1833,
|
2882 |
+
"step": 47900
|
2883 |
+
},
|
2884 |
+
{
|
2885 |
+
"epoch": 0.81,
|
2886 |
+
"learning_rate": 9.346150588633861e-06,
|
2887 |
+
"loss": 3.1755,
|
2888 |
+
"step": 48000
|
2889 |
+
},
|
2890 |
+
{
|
2891 |
+
"epoch": 0.81,
|
2892 |
+
"learning_rate": 9.261455069026849e-06,
|
2893 |
+
"loss": 3.1693,
|
2894 |
+
"step": 48100
|
2895 |
+
},
|
2896 |
+
{
|
2897 |
+
"epoch": 0.82,
|
2898 |
+
"learning_rate": 9.176759549419837e-06,
|
2899 |
+
"loss": 3.1777,
|
2900 |
+
"step": 48200
|
2901 |
+
},
|
2902 |
+
{
|
2903 |
+
"epoch": 0.82,
|
2904 |
+
"learning_rate": 9.092064029812823e-06,
|
2905 |
+
"loss": 3.1638,
|
2906 |
+
"step": 48300
|
2907 |
+
},
|
2908 |
+
{
|
2909 |
+
"epoch": 0.82,
|
2910 |
+
"learning_rate": 9.00736851020581e-06,
|
2911 |
+
"loss": 3.1786,
|
2912 |
+
"step": 48400
|
2913 |
+
},
|
2914 |
+
{
|
2915 |
+
"epoch": 0.82,
|
2916 |
+
"learning_rate": 8.922672990598798e-06,
|
2917 |
+
"loss": 3.1759,
|
2918 |
+
"step": 48500
|
2919 |
+
},
|
2920 |
+
{
|
2921 |
+
"epoch": 0.82,
|
2922 |
+
"learning_rate": 8.837977470991784e-06,
|
2923 |
+
"loss": 3.1712,
|
2924 |
+
"step": 48600
|
2925 |
+
},
|
2926 |
+
{
|
2927 |
+
"epoch": 0.82,
|
2928 |
+
"learning_rate": 8.753281951384771e-06,
|
2929 |
+
"loss": 3.1689,
|
2930 |
+
"step": 48700
|
2931 |
+
},
|
2932 |
+
{
|
2933 |
+
"epoch": 0.83,
|
2934 |
+
"learning_rate": 8.668586431777759e-06,
|
2935 |
+
"loss": 3.1861,
|
2936 |
+
"step": 48800
|
2937 |
+
},
|
2938 |
+
{
|
2939 |
+
"epoch": 0.83,
|
2940 |
+
"learning_rate": 8.583890912170747e-06,
|
2941 |
+
"loss": 3.1732,
|
2942 |
+
"step": 48900
|
2943 |
+
},
|
2944 |
+
{
|
2945 |
+
"epoch": 0.83,
|
2946 |
+
"learning_rate": 8.499195392563734e-06,
|
2947 |
+
"loss": 3.1735,
|
2948 |
+
"step": 49000
|
2949 |
+
},
|
2950 |
+
{
|
2951 |
+
"epoch": 0.83,
|
2952 |
+
"learning_rate": 8.414499872956722e-06,
|
2953 |
+
"loss": 3.1827,
|
2954 |
+
"step": 49100
|
2955 |
+
},
|
2956 |
+
{
|
2957 |
+
"epoch": 0.83,
|
2958 |
+
"learning_rate": 8.329804353349708e-06,
|
2959 |
+
"loss": 3.1681,
|
2960 |
+
"step": 49200
|
2961 |
+
},
|
2962 |
+
{
|
2963 |
+
"epoch": 0.84,
|
2964 |
+
"learning_rate": 8.245108833742696e-06,
|
2965 |
+
"loss": 3.1506,
|
2966 |
+
"step": 49300
|
2967 |
+
},
|
2968 |
+
{
|
2969 |
+
"epoch": 0.84,
|
2970 |
+
"learning_rate": 8.160413314135683e-06,
|
2971 |
+
"loss": 3.1628,
|
2972 |
+
"step": 49400
|
2973 |
+
},
|
2974 |
+
{
|
2975 |
+
"epoch": 0.84,
|
2976 |
+
"learning_rate": 8.07571779452867e-06,
|
2977 |
+
"loss": 3.1808,
|
2978 |
+
"step": 49500
|
2979 |
+
},
|
2980 |
+
{
|
2981 |
+
"epoch": 0.84,
|
2982 |
+
"learning_rate": 7.991022274921657e-06,
|
2983 |
+
"loss": 3.1682,
|
2984 |
+
"step": 49600
|
2985 |
+
},
|
2986 |
+
{
|
2987 |
+
"epoch": 0.84,
|
2988 |
+
"learning_rate": 7.906326755314645e-06,
|
2989 |
+
"loss": 3.1668,
|
2990 |
+
"step": 49700
|
2991 |
+
},
|
2992 |
+
{
|
2993 |
+
"epoch": 0.84,
|
2994 |
+
"learning_rate": 7.82163123570763e-06,
|
2995 |
+
"loss": 3.1663,
|
2996 |
+
"step": 49800
|
2997 |
+
},
|
2998 |
+
{
|
2999 |
+
"epoch": 0.85,
|
3000 |
+
"learning_rate": 7.736935716100618e-06,
|
3001 |
+
"loss": 3.1656,
|
3002 |
+
"step": 49900
|
3003 |
+
},
|
3004 |
+
{
|
3005 |
+
"epoch": 0.85,
|
3006 |
+
"learning_rate": 7.652240196493606e-06,
|
3007 |
+
"loss": 3.1749,
|
3008 |
+
"step": 50000
|
3009 |
+
},
|
3010 |
+
{
|
3011 |
+
"epoch": 0.85,
|
3012 |
+
"learning_rate": 7.567544676886593e-06,
|
3013 |
+
"loss": 3.1667,
|
3014 |
+
"step": 50100
|
3015 |
+
},
|
3016 |
+
{
|
3017 |
+
"epoch": 0.85,
|
3018 |
+
"learning_rate": 7.482849157279579e-06,
|
3019 |
+
"loss": 3.1658,
|
3020 |
+
"step": 50200
|
3021 |
+
},
|
3022 |
+
{
|
3023 |
+
"epoch": 0.85,
|
3024 |
+
"learning_rate": 7.398153637672567e-06,
|
3025 |
+
"loss": 3.1689,
|
3026 |
+
"step": 50300
|
3027 |
+
},
|
3028 |
+
{
|
3029 |
+
"epoch": 0.85,
|
3030 |
+
"learning_rate": 7.3134581180655555e-06,
|
3031 |
+
"loss": 3.1652,
|
3032 |
+
"step": 50400
|
3033 |
+
},
|
3034 |
+
{
|
3035 |
+
"epoch": 0.86,
|
3036 |
+
"learning_rate": 7.228762598458542e-06,
|
3037 |
+
"loss": 3.1625,
|
3038 |
+
"step": 50500
|
3039 |
+
},
|
3040 |
+
{
|
3041 |
+
"epoch": 0.86,
|
3042 |
+
"learning_rate": 7.14406707885153e-06,
|
3043 |
+
"loss": 3.1584,
|
3044 |
+
"step": 50600
|
3045 |
+
},
|
3046 |
+
{
|
3047 |
+
"epoch": 0.86,
|
3048 |
+
"learning_rate": 7.059371559244517e-06,
|
3049 |
+
"loss": 3.1695,
|
3050 |
+
"step": 50700
|
3051 |
+
},
|
3052 |
+
{
|
3053 |
+
"epoch": 0.86,
|
3054 |
+
"learning_rate": 6.974676039637504e-06,
|
3055 |
+
"loss": 3.1612,
|
3056 |
+
"step": 50800
|
3057 |
+
},
|
3058 |
+
{
|
3059 |
+
"epoch": 0.86,
|
3060 |
+
"learning_rate": 6.889980520030491e-06,
|
3061 |
+
"loss": 3.1564,
|
3062 |
+
"step": 50900
|
3063 |
+
},
|
3064 |
+
{
|
3065 |
+
"epoch": 0.86,
|
3066 |
+
"learning_rate": 6.805285000423478e-06,
|
3067 |
+
"loss": 3.1747,
|
3068 |
+
"step": 51000
|
3069 |
+
},
|
3070 |
+
{
|
3071 |
+
"epoch": 0.87,
|
3072 |
+
"learning_rate": 6.720589480816465e-06,
|
3073 |
+
"loss": 3.165,
|
3074 |
+
"step": 51100
|
3075 |
+
},
|
3076 |
+
{
|
3077 |
+
"epoch": 0.87,
|
3078 |
+
"learning_rate": 6.6358939612094525e-06,
|
3079 |
+
"loss": 3.1672,
|
3080 |
+
"step": 51200
|
3081 |
+
},
|
3082 |
+
{
|
3083 |
+
"epoch": 0.87,
|
3084 |
+
"learning_rate": 6.551198441602439e-06,
|
3085 |
+
"loss": 3.1618,
|
3086 |
+
"step": 51300
|
3087 |
+
},
|
3088 |
+
{
|
3089 |
+
"epoch": 0.87,
|
3090 |
+
"learning_rate": 6.466502921995427e-06,
|
3091 |
+
"loss": 3.172,
|
3092 |
+
"step": 51400
|
3093 |
+
},
|
3094 |
+
{
|
3095 |
+
"epoch": 0.87,
|
3096 |
+
"learning_rate": 6.381807402388414e-06,
|
3097 |
+
"loss": 3.1683,
|
3098 |
+
"step": 51500
|
3099 |
+
},
|
3100 |
+
{
|
3101 |
+
"epoch": 0.87,
|
3102 |
+
"learning_rate": 6.2971118827814005e-06,
|
3103 |
+
"loss": 3.1752,
|
3104 |
+
"step": 51600
|
3105 |
+
},
|
3106 |
+
{
|
3107 |
+
"epoch": 0.88,
|
3108 |
+
"learning_rate": 6.212416363174388e-06,
|
3109 |
+
"loss": 3.1698,
|
3110 |
+
"step": 51700
|
3111 |
+
},
|
3112 |
+
{
|
3113 |
+
"epoch": 0.88,
|
3114 |
+
"learning_rate": 6.127720843567376e-06,
|
3115 |
+
"loss": 3.1615,
|
3116 |
+
"step": 51800
|
3117 |
+
},
|
3118 |
+
{
|
3119 |
+
"epoch": 0.88,
|
3120 |
+
"learning_rate": 6.043025323960363e-06,
|
3121 |
+
"loss": 3.1667,
|
3122 |
+
"step": 51900
|
3123 |
+
},
|
3124 |
+
{
|
3125 |
+
"epoch": 0.88,
|
3126 |
+
"learning_rate": 5.95832980435335e-06,
|
3127 |
+
"loss": 3.1699,
|
3128 |
+
"step": 52000
|
3129 |
+
},
|
3130 |
+
{
|
3131 |
+
"epoch": 0.88,
|
3132 |
+
"learning_rate": 5.873634284746337e-06,
|
3133 |
+
"loss": 3.1621,
|
3134 |
+
"step": 52100
|
3135 |
+
},
|
3136 |
+
{
|
3137 |
+
"epoch": 0.88,
|
3138 |
+
"learning_rate": 5.788938765139324e-06,
|
3139 |
+
"loss": 3.1789,
|
3140 |
+
"step": 52200
|
3141 |
+
},
|
3142 |
+
{
|
3143 |
+
"epoch": 0.89,
|
3144 |
+
"learning_rate": 5.7042432455323115e-06,
|
3145 |
+
"loss": 3.1679,
|
3146 |
+
"step": 52300
|
3147 |
+
},
|
3148 |
+
{
|
3149 |
+
"epoch": 0.89,
|
3150 |
+
"learning_rate": 5.619547725925299e-06,
|
3151 |
+
"loss": 3.1751,
|
3152 |
+
"step": 52400
|
3153 |
+
},
|
3154 |
+
{
|
3155 |
+
"epoch": 0.89,
|
3156 |
+
"learning_rate": 5.534852206318286e-06,
|
3157 |
+
"loss": 3.1589,
|
3158 |
+
"step": 52500
|
3159 |
+
},
|
3160 |
+
{
|
3161 |
+
"epoch": 0.89,
|
3162 |
+
"learning_rate": 5.450156686711274e-06,
|
3163 |
+
"loss": 3.1644,
|
3164 |
+
"step": 52600
|
3165 |
+
},
|
3166 |
+
{
|
3167 |
+
"epoch": 0.89,
|
3168 |
+
"learning_rate": 5.36546116710426e-06,
|
3169 |
+
"loss": 3.1777,
|
3170 |
+
"step": 52700
|
3171 |
+
},
|
3172 |
+
{
|
3173 |
+
"epoch": 0.89,
|
3174 |
+
"learning_rate": 5.280765647497247e-06,
|
3175 |
+
"loss": 3.1678,
|
3176 |
+
"step": 52800
|
3177 |
+
},
|
3178 |
+
{
|
3179 |
+
"epoch": 0.9,
|
3180 |
+
"learning_rate": 5.196070127890235e-06,
|
3181 |
+
"loss": 3.1648,
|
3182 |
+
"step": 52900
|
3183 |
+
},
|
3184 |
+
{
|
3185 |
+
"epoch": 0.9,
|
3186 |
+
"learning_rate": 5.111374608283222e-06,
|
3187 |
+
"loss": 3.1621,
|
3188 |
+
"step": 53000
|
3189 |
+
},
|
3190 |
+
{
|
3191 |
+
"epoch": 0.9,
|
3192 |
+
"learning_rate": 5.026679088676209e-06,
|
3193 |
+
"loss": 3.1644,
|
3194 |
+
"step": 53100
|
3195 |
+
},
|
3196 |
+
{
|
3197 |
+
"epoch": 0.9,
|
3198 |
+
"learning_rate": 4.941983569069197e-06,
|
3199 |
+
"loss": 3.1822,
|
3200 |
+
"step": 53200
|
3201 |
+
},
|
3202 |
+
{
|
3203 |
+
"epoch": 0.9,
|
3204 |
+
"learning_rate": 4.857288049462184e-06,
|
3205 |
+
"loss": 3.173,
|
3206 |
+
"step": 53300
|
3207 |
+
},
|
3208 |
+
{
|
3209 |
+
"epoch": 0.9,
|
3210 |
+
"learning_rate": 4.7725925298551706e-06,
|
3211 |
+
"loss": 3.1617,
|
3212 |
+
"step": 53400
|
3213 |
+
},
|
3214 |
+
{
|
3215 |
+
"epoch": 0.91,
|
3216 |
+
"learning_rate": 4.687897010248158e-06,
|
3217 |
+
"loss": 3.1615,
|
3218 |
+
"step": 53500
|
3219 |
+
},
|
3220 |
+
{
|
3221 |
+
"epoch": 0.91,
|
3222 |
+
"learning_rate": 4.603201490641145e-06,
|
3223 |
+
"loss": 3.1535,
|
3224 |
+
"step": 53600
|
3225 |
+
},
|
3226 |
+
{
|
3227 |
+
"epoch": 0.91,
|
3228 |
+
"learning_rate": 4.518505971034133e-06,
|
3229 |
+
"loss": 3.1688,
|
3230 |
+
"step": 53700
|
3231 |
+
},
|
3232 |
+
{
|
3233 |
+
"epoch": 0.91,
|
3234 |
+
"learning_rate": 4.43381045142712e-06,
|
3235 |
+
"loss": 3.1839,
|
3236 |
+
"step": 53800
|
3237 |
+
},
|
3238 |
+
{
|
3239 |
+
"epoch": 0.91,
|
3240 |
+
"learning_rate": 4.349114931820107e-06,
|
3241 |
+
"loss": 3.1769,
|
3242 |
+
"step": 53900
|
3243 |
+
},
|
3244 |
+
{
|
3245 |
+
"epoch": 0.91,
|
3246 |
+
"learning_rate": 4.264419412213094e-06,
|
3247 |
+
"loss": 3.1649,
|
3248 |
+
"step": 54000
|
3249 |
+
},
|
3250 |
+
{
|
3251 |
+
"epoch": 0.92,
|
3252 |
+
"learning_rate": 4.1797238926060815e-06,
|
3253 |
+
"loss": 3.1644,
|
3254 |
+
"step": 54100
|
3255 |
+
},
|
3256 |
+
{
|
3257 |
+
"epoch": 0.92,
|
3258 |
+
"learning_rate": 4.095028372999068e-06,
|
3259 |
+
"loss": 3.1616,
|
3260 |
+
"step": 54200
|
3261 |
+
},
|
3262 |
+
{
|
3263 |
+
"epoch": 0.92,
|
3264 |
+
"learning_rate": 4.010332853392056e-06,
|
3265 |
+
"loss": 3.1578,
|
3266 |
+
"step": 54300
|
3267 |
+
},
|
3268 |
+
{
|
3269 |
+
"epoch": 0.92,
|
3270 |
+
"learning_rate": 3.925637333785043e-06,
|
3271 |
+
"loss": 3.1621,
|
3272 |
+
"step": 54400
|
3273 |
+
},
|
3274 |
+
{
|
3275 |
+
"epoch": 0.92,
|
3276 |
+
"learning_rate": 3.84094181417803e-06,
|
3277 |
+
"loss": 3.1523,
|
3278 |
+
"step": 54500
|
3279 |
+
},
|
3280 |
+
{
|
3281 |
+
"epoch": 0.92,
|
3282 |
+
"learning_rate": 3.7562462945710177e-06,
|
3283 |
+
"loss": 3.1667,
|
3284 |
+
"step": 54600
|
3285 |
+
},
|
3286 |
+
{
|
3287 |
+
"epoch": 0.93,
|
3288 |
+
"learning_rate": 3.671550774964005e-06,
|
3289 |
+
"loss": 3.1748,
|
3290 |
+
"step": 54700
|
3291 |
+
},
|
3292 |
+
{
|
3293 |
+
"epoch": 0.93,
|
3294 |
+
"learning_rate": 3.5868552553569917e-06,
|
3295 |
+
"loss": 3.1773,
|
3296 |
+
"step": 54800
|
3297 |
+
},
|
3298 |
+
{
|
3299 |
+
"epoch": 0.93,
|
3300 |
+
"learning_rate": 3.502159735749979e-06,
|
3301 |
+
"loss": 3.1418,
|
3302 |
+
"step": 54900
|
3303 |
+
},
|
3304 |
+
{
|
3305 |
+
"epoch": 0.93,
|
3306 |
+
"learning_rate": 3.417464216142966e-06,
|
3307 |
+
"loss": 3.1613,
|
3308 |
+
"step": 55000
|
3309 |
+
},
|
3310 |
+
{
|
3311 |
+
"epoch": 0.93,
|
3312 |
+
"learning_rate": 3.3327686965359534e-06,
|
3313 |
+
"loss": 3.154,
|
3314 |
+
"step": 55100
|
3315 |
+
},
|
3316 |
+
{
|
3317 |
+
"epoch": 0.94,
|
3318 |
+
"learning_rate": 3.24807317692894e-06,
|
3319 |
+
"loss": 3.1776,
|
3320 |
+
"step": 55200
|
3321 |
+
},
|
3322 |
+
{
|
3323 |
+
"epoch": 0.94,
|
3324 |
+
"learning_rate": 3.1633776573219282e-06,
|
3325 |
+
"loss": 3.1513,
|
3326 |
+
"step": 55300
|
3327 |
+
},
|
3328 |
+
{
|
3329 |
+
"epoch": 0.94,
|
3330 |
+
"learning_rate": 3.078682137714915e-06,
|
3331 |
+
"loss": 3.1608,
|
3332 |
+
"step": 55400
|
3333 |
+
},
|
3334 |
+
{
|
3335 |
+
"epoch": 0.94,
|
3336 |
+
"learning_rate": 2.9939866181079023e-06,
|
3337 |
+
"loss": 3.1759,
|
3338 |
+
"step": 55500
|
3339 |
+
},
|
3340 |
+
{
|
3341 |
+
"epoch": 0.94,
|
3342 |
+
"learning_rate": 2.9092910985008895e-06,
|
3343 |
+
"loss": 3.1549,
|
3344 |
+
"step": 55600
|
3345 |
+
},
|
3346 |
+
{
|
3347 |
+
"epoch": 0.94,
|
3348 |
+
"learning_rate": 2.8245955788938767e-06,
|
3349 |
+
"loss": 3.1651,
|
3350 |
+
"step": 55700
|
3351 |
+
},
|
3352 |
+
{
|
3353 |
+
"epoch": 0.95,
|
3354 |
+
"learning_rate": 2.739900059286864e-06,
|
3355 |
+
"loss": 3.167,
|
3356 |
+
"step": 55800
|
3357 |
+
},
|
3358 |
+
{
|
3359 |
+
"epoch": 0.95,
|
3360 |
+
"learning_rate": 2.655204539679851e-06,
|
3361 |
+
"loss": 3.1577,
|
3362 |
+
"step": 55900
|
3363 |
+
},
|
3364 |
+
{
|
3365 |
+
"epoch": 0.95,
|
3366 |
+
"learning_rate": 2.5705090200728384e-06,
|
3367 |
+
"loss": 3.1514,
|
3368 |
+
"step": 56000
|
3369 |
+
},
|
3370 |
+
{
|
3371 |
+
"epoch": 0.95,
|
3372 |
+
"learning_rate": 2.4858135004658256e-06,
|
3373 |
+
"loss": 3.1693,
|
3374 |
+
"step": 56100
|
3375 |
+
},
|
3376 |
+
{
|
3377 |
+
"epoch": 0.95,
|
3378 |
+
"learning_rate": 2.4011179808588124e-06,
|
3379 |
+
"loss": 3.1473,
|
3380 |
+
"step": 56200
|
3381 |
+
},
|
3382 |
+
{
|
3383 |
+
"epoch": 0.95,
|
3384 |
+
"learning_rate": 2.3164224612518e-06,
|
3385 |
+
"loss": 3.1574,
|
3386 |
+
"step": 56300
|
3387 |
+
},
|
3388 |
+
{
|
3389 |
+
"epoch": 0.96,
|
3390 |
+
"learning_rate": 2.2317269416447873e-06,
|
3391 |
+
"loss": 3.1603,
|
3392 |
+
"step": 56400
|
3393 |
+
},
|
3394 |
+
{
|
3395 |
+
"epoch": 0.96,
|
3396 |
+
"learning_rate": 2.147031422037774e-06,
|
3397 |
+
"loss": 3.1687,
|
3398 |
+
"step": 56500
|
3399 |
+
},
|
3400 |
+
{
|
3401 |
+
"epoch": 0.96,
|
3402 |
+
"learning_rate": 2.0623359024307617e-06,
|
3403 |
+
"loss": 3.1608,
|
3404 |
+
"step": 56600
|
3405 |
+
},
|
3406 |
+
{
|
3407 |
+
"epoch": 0.96,
|
3408 |
+
"learning_rate": 1.977640382823749e-06,
|
3409 |
+
"loss": 3.1538,
|
3410 |
+
"step": 56700
|
3411 |
+
},
|
3412 |
+
{
|
3413 |
+
"epoch": 0.96,
|
3414 |
+
"learning_rate": 1.892944863216736e-06,
|
3415 |
+
"loss": 3.1622,
|
3416 |
+
"step": 56800
|
3417 |
+
},
|
3418 |
+
{
|
3419 |
+
"epoch": 0.96,
|
3420 |
+
"learning_rate": 1.808249343609723e-06,
|
3421 |
+
"loss": 3.1582,
|
3422 |
+
"step": 56900
|
3423 |
+
},
|
3424 |
+
{
|
3425 |
+
"epoch": 0.97,
|
3426 |
+
"learning_rate": 1.7235538240027104e-06,
|
3427 |
+
"loss": 3.1573,
|
3428 |
+
"step": 57000
|
3429 |
+
},
|
3430 |
+
{
|
3431 |
+
"epoch": 0.97,
|
3432 |
+
"learning_rate": 1.6388583043956976e-06,
|
3433 |
+
"loss": 3.1431,
|
3434 |
+
"step": 57100
|
3435 |
+
},
|
3436 |
+
{
|
3437 |
+
"epoch": 0.97,
|
3438 |
+
"learning_rate": 1.5541627847886846e-06,
|
3439 |
+
"loss": 3.1634,
|
3440 |
+
"step": 57200
|
3441 |
+
},
|
3442 |
+
{
|
3443 |
+
"epoch": 0.97,
|
3444 |
+
"learning_rate": 1.469467265181672e-06,
|
3445 |
+
"loss": 3.1581,
|
3446 |
+
"step": 57300
|
3447 |
+
},
|
3448 |
+
{
|
3449 |
+
"epoch": 0.97,
|
3450 |
+
"learning_rate": 1.384771745574659e-06,
|
3451 |
+
"loss": 3.1531,
|
3452 |
+
"step": 57400
|
3453 |
+
},
|
3454 |
+
{
|
3455 |
+
"epoch": 0.97,
|
3456 |
+
"learning_rate": 1.3000762259676463e-06,
|
3457 |
+
"loss": 3.1531,
|
3458 |
+
"step": 57500
|
3459 |
+
},
|
3460 |
+
{
|
3461 |
+
"epoch": 0.98,
|
3462 |
+
"learning_rate": 1.2153807063606335e-06,
|
3463 |
+
"loss": 3.1499,
|
3464 |
+
"step": 57600
|
3465 |
+
},
|
3466 |
+
{
|
3467 |
+
"epoch": 0.98,
|
3468 |
+
"learning_rate": 1.1306851867536208e-06,
|
3469 |
+
"loss": 3.1624,
|
3470 |
+
"step": 57700
|
3471 |
+
},
|
3472 |
+
{
|
3473 |
+
"epoch": 0.98,
|
3474 |
+
"learning_rate": 1.045989667146608e-06,
|
3475 |
+
"loss": 3.1609,
|
3476 |
+
"step": 57800
|
3477 |
+
},
|
3478 |
+
{
|
3479 |
+
"epoch": 0.98,
|
3480 |
+
"learning_rate": 9.612941475395952e-07,
|
3481 |
+
"loss": 3.1707,
|
3482 |
+
"step": 57900
|
3483 |
+
},
|
3484 |
+
{
|
3485 |
+
"epoch": 0.98,
|
3486 |
+
"learning_rate": 8.765986279325823e-07,
|
3487 |
+
"loss": 3.1626,
|
3488 |
+
"step": 58000
|
3489 |
+
},
|
3490 |
+
{
|
3491 |
+
"epoch": 0.98,
|
3492 |
+
"learning_rate": 7.919031083255696e-07,
|
3493 |
+
"loss": 3.1698,
|
3494 |
+
"step": 58100
|
3495 |
+
},
|
3496 |
+
{
|
3497 |
+
"epoch": 0.99,
|
3498 |
+
"learning_rate": 7.072075887185568e-07,
|
3499 |
+
"loss": 3.1589,
|
3500 |
+
"step": 58200
|
3501 |
+
},
|
3502 |
+
{
|
3503 |
+
"epoch": 0.99,
|
3504 |
+
"learning_rate": 6.22512069111544e-07,
|
3505 |
+
"loss": 3.1557,
|
3506 |
+
"step": 58300
|
3507 |
+
},
|
3508 |
+
{
|
3509 |
+
"epoch": 0.99,
|
3510 |
+
"learning_rate": 5.378165495045312e-07,
|
3511 |
+
"loss": 3.1603,
|
3512 |
+
"step": 58400
|
3513 |
+
},
|
3514 |
+
{
|
3515 |
+
"epoch": 0.99,
|
3516 |
+
"learning_rate": 4.5312102989751844e-07,
|
3517 |
+
"loss": 3.1588,
|
3518 |
+
"step": 58500
|
3519 |
+
},
|
3520 |
+
{
|
3521 |
+
"epoch": 0.99,
|
3522 |
+
"learning_rate": 3.6842551029050566e-07,
|
3523 |
+
"loss": 3.1622,
|
3524 |
+
"step": 58600
|
3525 |
+
},
|
3526 |
+
{
|
3527 |
+
"epoch": 0.99,
|
3528 |
+
"learning_rate": 2.837299906834929e-07,
|
3529 |
+
"loss": 3.1547,
|
3530 |
+
"step": 58700
|
3531 |
+
},
|
3532 |
+
{
|
3533 |
+
"epoch": 1.0,
|
3534 |
+
"learning_rate": 1.9903447107648006e-07,
|
3535 |
+
"loss": 3.1522,
|
3536 |
+
"step": 58800
|
3537 |
+
},
|
3538 |
+
{
|
3539 |
+
"epoch": 1.0,
|
3540 |
+
"learning_rate": 1.1433895146946727e-07,
|
3541 |
+
"loss": 3.1583,
|
3542 |
+
"step": 58900
|
3543 |
+
},
|
3544 |
+
{
|
3545 |
+
"epoch": 1.0,
|
3546 |
+
"learning_rate": 2.9643431862454477e-08,
|
3547 |
+
"loss": 3.1542,
|
3548 |
+
"step": 59000
|
3549 |
+
},
|
3550 |
+
{
|
3551 |
+
"epoch": 1.0,
|
3552 |
+
"step": 59035,
|
3553 |
+
"total_flos": 2.318685330743415e+18,
|
3554 |
+
"train_loss": 3.2513424668918267,
|
3555 |
+
"train_runtime": 267734.5376,
|
3556 |
+
"train_samples_per_second": 7.056,
|
3557 |
+
"train_steps_per_second": 0.22
|
3558 |
+
}
|
3559 |
+
],
|
3560 |
+
"max_steps": 59035,
|
3561 |
+
"num_train_epochs": 1,
|
3562 |
+
"total_flos": 2.318685330743415e+18,
|
3563 |
+
"trial_name": null,
|
3564 |
+
"trial_params": null
|
3565 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7736f85a2ec4e9aa9b423a901250c13be999d1d90d8a18a402dbb12b11386796
|
3 |
+
size 3951
|