--- license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: videomae-base-finetuned-subset-check10 results: [] --- # videomae-base-finetuned-subset-check10 This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co./MCG-NJU/videomae-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8682 - Accuracy: 0.6343 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 2220 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.5175 | 0.03 | 56 | 1.6041 | 0.2074 | | 1.4397 | 1.03 | 112 | 1.4559 | 0.3871 | | 1.464 | 2.03 | 168 | 1.3637 | 0.3963 | | 1.3404 | 3.03 | 224 | 1.2467 | 0.4470 | | 1.3284 | 4.03 | 280 | 1.3115 | 0.3318 | | 1.1598 | 5.03 | 336 | 1.2489 | 0.4470 | | 0.9615 | 6.03 | 392 | 1.3057 | 0.4009 | | 0.9357 | 7.03 | 448 | 0.9201 | 0.6498 | | 0.9785 | 8.03 | 504 | 0.8629 | 0.6774 | | 1.0862 | 9.03 | 560 | 1.0977 | 0.5069 | | 0.9315 | 10.03 | 616 | 0.7868 | 0.7097 | | 0.9404 | 11.03 | 672 | 0.8170 | 0.6728 | | 0.939 | 12.03 | 728 | 0.9246 | 0.6636 | | 0.8205 | 13.03 | 784 | 0.8420 | 0.6866 | | 0.6719 | 14.03 | 840 | 1.0725 | 0.5899 | | 0.8308 | 15.03 | 896 | 0.8683 | 0.6912 | | 0.7554 | 16.03 | 952 | 0.9684 | 0.5991 | | 0.6962 | 17.03 | 1008 | 1.1106 | 0.5484 | | 0.7995 | 18.03 | 1064 | 0.9751 | 0.6498 | | 0.8298 | 19.03 | 1120 | 1.0631 | 0.5300 | | 0.6607 | 20.03 | 1176 | 0.9458 | 0.6175 | | 0.688 | 21.03 | 1232 | 1.0296 | 0.6037 | | 0.5835 | 22.03 | 1288 | 0.8948 | 0.6774 | | 0.6987 | 23.03 | 1344 | 0.7883 | 0.7189 | | 0.4979 | 24.03 | 1400 | 0.7089 | 0.7189 | | 0.6163 | 25.03 | 1456 | 0.7634 | 0.7235 | | 0.6754 | 26.03 | 1512 | 0.9444 | 0.6359 | | 0.6673 | 27.03 | 1568 | 0.8391 | 0.6544 | | 0.4924 | 28.03 | 1624 | 0.8289 | 0.6682 | | 0.6438 | 29.03 | 1680 | 0.9605 | 0.6129 | | 0.5714 | 30.03 | 1736 | 0.8838 | 0.6452 | | 0.6726 | 31.03 | 1792 | 0.8412 | 0.6590 | | 0.5027 | 32.03 | 1848 | 0.8439 | 0.6728 | | 0.4649 | 33.03 | 1904 | 0.9525 | 0.6267 | | 0.6625 | 34.03 | 1960 | 0.7850 | 0.7281 | | 0.5793 | 35.03 | 2016 | 0.8481 | 0.6728 | | 0.6411 | 36.03 | 2072 | 0.8842 | 0.6590 | | 0.6592 | 37.03 | 2128 | 0.8028 | 0.6912 | | 0.5524 | 38.03 | 2184 | 0.8216 | 0.6866 | | 0.5697 | 39.02 | 2220 | 0.8339 | 0.6774 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.1 - Datasets 2.16.1 - Tokenizers 0.15.0