File size: 4,479 Bytes
51fba2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
---
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: videomae-base-finetuned-subset-0401
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# videomae-base-finetuned-subset-0401

This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co./MCG-NJU/videomae-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6379
- Accuracy: 0.7824

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 2775

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.6048        | 0.02  | 56   | 1.6213          | 0.0829   |
| 1.5891        | 1.02  | 112  | 1.5230          | 0.2811   |
| 1.4797        | 2.02  | 168  | 1.6437          | 0.1982   |
| 1.3999        | 3.02  | 224  | 0.9263          | 0.7465   |
| 1.0917        | 4.02  | 280  | 1.2308          | 0.4931   |
| 1.238         | 5.02  | 336  | 0.9406          | 0.6590   |
| 1.1525        | 6.02  | 392  | 0.8809          | 0.7051   |
| 1.0806        | 7.02  | 448  | 1.0089          | 0.5945   |
| 0.8483        | 8.02  | 504  | 0.9700          | 0.5853   |
| 0.992         | 9.02  | 560  | 1.1880          | 0.4885   |
| 0.862         | 10.02 | 616  | 0.7174          | 0.7512   |
| 1.0694        | 11.02 | 672  | 0.8598          | 0.7143   |
| 0.8885        | 12.02 | 728  | 0.8290          | 0.7097   |
| 0.8965        | 13.02 | 784  | 0.8304          | 0.7143   |
| 0.7371        | 14.02 | 840  | 0.7009          | 0.7696   |
| 0.6872        | 15.02 | 896  | 0.6768          | 0.7926   |
| 0.6022        | 16.02 | 952  | 0.7513          | 0.7373   |
| 0.9308        | 17.02 | 1008 | 0.8055          | 0.7097   |
| 0.4456        | 18.02 | 1064 | 0.7876          | 0.6728   |
| 0.6802        | 19.02 | 1120 | 0.7224          | 0.7235   |
| 0.7154        | 20.02 | 1176 | 0.7434          | 0.7051   |
| 0.503         | 21.02 | 1232 | 0.8346          | 0.6959   |
| 0.7203        | 22.02 | 1288 | 0.9694          | 0.5991   |
| 0.6799        | 23.02 | 1344 | 0.6474          | 0.7696   |
| 0.5802        | 24.02 | 1400 | 0.9573          | 0.6359   |
| 0.7047        | 25.02 | 1456 | 0.9120          | 0.6959   |
| 0.6701        | 26.02 | 1512 | 1.1690          | 0.5853   |
| 0.5514        | 27.02 | 1568 | 0.9174          | 0.6866   |
| 0.538         | 28.02 | 1624 | 0.8543          | 0.6866   |
| 0.7226        | 29.02 | 1680 | 0.7774          | 0.7465   |
| 0.4459        | 30.02 | 1736 | 0.9135          | 0.6359   |
| 0.3905        | 31.02 | 1792 | 0.8586          | 0.6728   |
| 0.7071        | 32.02 | 1848 | 0.7919          | 0.7327   |
| 0.4983        | 33.02 | 1904 | 0.7507          | 0.7512   |
| 0.5654        | 34.02 | 1960 | 0.7679          | 0.7143   |
| 0.5569        | 35.02 | 2016 | 0.8438          | 0.7097   |
| 0.3998        | 36.02 | 2072 | 0.8691          | 0.7189   |
| 0.5341        | 37.02 | 2128 | 0.8056          | 0.7604   |
| 0.4024        | 38.02 | 2184 | 0.7071          | 0.7880   |
| 0.5011        | 39.02 | 2240 | 0.8827          | 0.7005   |
| 0.5857        | 40.02 | 2296 | 0.8525          | 0.7097   |
| 0.5619        | 41.02 | 2352 | 0.8228          | 0.7512   |
| 0.6052        | 42.02 | 2408 | 0.8320          | 0.7373   |
| 0.5124        | 43.02 | 2464 | 0.8776          | 0.7419   |
| 0.3323        | 44.02 | 2520 | 0.8515          | 0.7465   |
| 0.5684        | 45.02 | 2576 | 0.9309          | 0.7097   |
| 0.4406        | 46.02 | 2632 | 0.8826          | 0.7465   |
| 0.6164        | 47.02 | 2688 | 0.8994          | 0.6959   |
| 0.4549        | 48.02 | 2744 | 0.8700          | 0.7189   |
| 0.3453        | 49.01 | 2775 | 0.8822          | 0.7189   |


### Framework versions

- Transformers 4.36.2
- Pytorch 1.13.1
- Datasets 2.16.1
- Tokenizers 0.15.0