--- license: mit widget: - text: '<|system|> You are a helpful assistant <|user|> What is your name? Tell me about yourself. <|assistant|>' model-index: - name: tinyllama-730M-test results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 25.09 name: normalized accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Josephgflowers/tinyllama-730M-test name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 33.82 name: normalized accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Josephgflowers/tinyllama-730M-test name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 24.43 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Josephgflowers/tinyllama-730M-test name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 42.9 source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Josephgflowers/tinyllama-730M-test name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 51.07 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Josephgflowers/tinyllama-730M-test name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 0.0 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Josephgflowers/tinyllama-730M-test name: Open LLM Leaderboard --- I cut my TinyLlama 1.1B cinder v 2 down from 22 layers to 14. At 14 there was no coherent text but there were emerging ideas of a response. 1000 steps on step-by-step dataset. 6000 on Reason-with-cinder. The loss was still over 1 and the learning rate was still over 4. This model needs significat training. I am putting it up as a base model that needs work. If you continue training please let me know on the tinyllama discord, I have some interesting plans for this model. # [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_Josephgflowers__tinyllama-730M-test) | Metric |Value| |---------------------------------|----:| |Avg. |29.55| |AI2 Reasoning Challenge (25-Shot)|25.09| |HellaSwag (10-Shot) |33.82| |MMLU (5-Shot) |24.43| |TruthfulQA (0-shot) |42.90| |Winogrande (5-shot) |51.07| |GSM8k (5-shot) | 0.00|