--- license: mit tags: - generated_from_trainer base_model: Josephgflowers/TinyLlama-Cinder-Tiny-Agent model-index: - name: TinyLlama-Cinder-Agent-v1 results: [] --- The goal of this Model is to build a Tinyllama model that can be used for tool usage, RAG, take system instructions, and as a general assistant. This model is a fine-tuned version of [Josephgflowers/TinyLlama-Cinder-Tiny-Agent](https://huggingface.co./Josephgflowers/TinyLlama-Cinder-Tiny-Agent). Special Thanks to https://nationtech.io/ for their generous sponorship in training this model. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6328952f798f8d122ce62a44/MbN_SXChmMxuHO8GjdUSc.png) This model is a fine-tuned version of [Josephgflowers/TinyLlama-3T-Cinder-v1.2](https://huggingface.co./Josephgflowers/TinyLlama-3T-Cinder-v1.2) on https://huggingface.co./datasets/Josephgflowers/agent_1. ## Model description This models is trained for RAG, Summary, Function Calling and Tool usage. Trained off of Cinder. Cinder is a chatbot designed for chat about STEM topics and storytelling. More information coming. See https://huggingface.co./Josephgflowers/TinyLlama-Cinder-Agent-Rag/blob/main/tinyllama_agent_cinder_txtai-rag.py For usage example with wiki rag. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.41.0.dev0 - Pytorch 2.2.2+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1 # [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_Josephgflowers__TinyLlama-Cinder-Agent-v1) | Metric |Value| |---------------------------------|----:| |Avg. |39.17| |AI2 Reasoning Challenge (25-Shot)|34.90| |HellaSwag (10-Shot) |53.87| |MMLU (5-Shot) |26.89| |TruthfulQA (0-shot) |39.08| |Winogrande (5-shot) |59.12| |GSM8k (5-shot) |21.15|