--- library_name: setfit tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer base_model: BAAI/bge-small-en-v1.5 metrics: - accuracy widget: - text: mostly works because of the universal themes , earnest performances ... and excellent use of music by india 's popular gulzar and jagjit singh . - text: in all the annals of the movies , few films have been this odd , inexplicable and unpleasant . - text: director charles stone iii applies more detail to the film 's music than to the story line ; what 's best about drumline is its energy . - text: there 's nothing exactly wrong here , but there 's not nearly enough that 's right . - text: it 's a bad sign in a thriller when you instantly know whodunit . pipeline_tag: text-classification inference: true model-index: - name: SetFit with BAAI/bge-small-en-v1.5 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.8621636463481603 name: Accuracy --- # SetFit with BAAI/bge-small-en-v1.5 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co./BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [BAAI/bge-small-en-v1.5](https://huggingface.co./BAAI/bge-small-en-v1.5) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 2 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co./blog/setfit) ### Model Labels | Label | Examples | |:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 1 | | | 0 | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.8622 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("Jorgeutd/setfit-bge-small-v1.5-sst2-50-shot") # Run inference preds = model("it 's a bad sign in a thriller when you instantly know whodunit .") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 3 | 21.31 | 50 | | Label | Training Sample Count | |:------|:----------------------| | 0 | 50 | | 1 | 50 | ### Training Hyperparameters - batch_size: (16, 16) - num_epochs: (10, 10) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0031 | 1 | 0.2515 | - | | 0.1567 | 50 | 0.2298 | - | | 0.3135 | 100 | 0.2134 | - | | 0.4702 | 150 | 0.0153 | - | | 0.6270 | 200 | 0.0048 | - | | 0.7837 | 250 | 0.0024 | - | | 0.9404 | 300 | 0.0023 | - | | 1.0972 | 350 | 0.0016 | - | | 1.2539 | 400 | 0.0016 | - | | 1.4107 | 450 | 0.001 | - | | 1.5674 | 500 | 0.0013 | - | | 1.7241 | 550 | 0.0008 | - | | 1.8809 | 600 | 0.0008 | - | | 2.0376 | 650 | 0.0007 | - | | 2.1944 | 700 | 0.0008 | - | | 2.3511 | 750 | 0.0008 | - | | 2.5078 | 800 | 0.0007 | - | | 2.6646 | 850 | 0.0006 | - | | 2.8213 | 900 | 0.0006 | - | | 2.9781 | 950 | 0.0005 | - | | 3.1348 | 1000 | 0.0006 | - | | 3.2915 | 1050 | 0.0006 | - | | 3.4483 | 1100 | 0.0005 | - | | 3.6050 | 1150 | 0.0005 | - | | 3.7618 | 1200 | 0.0005 | - | | 3.9185 | 1250 | 0.0005 | - | | 4.0752 | 1300 | 0.0005 | - | | 4.2320 | 1350 | 0.0004 | - | | 4.3887 | 1400 | 0.0004 | - | | 4.5455 | 1450 | 0.0004 | - | | 4.7022 | 1500 | 0.0003 | - | | 4.8589 | 1550 | 0.0006 | - | | 5.0157 | 1600 | 0.0007 | - | | 5.1724 | 1650 | 0.0004 | - | | 5.3292 | 1700 | 0.0004 | - | | 5.4859 | 1750 | 0.0004 | - | | 5.6426 | 1800 | 0.0004 | - | | 5.7994 | 1850 | 0.0003 | - | | 5.9561 | 1900 | 0.0004 | - | | 6.1129 | 1950 | 0.0003 | - | | 6.2696 | 2000 | 0.0003 | - | | 6.4263 | 2050 | 0.0005 | - | | 6.5831 | 2100 | 0.0003 | - | | 6.7398 | 2150 | 0.0003 | - | | 6.8966 | 2200 | 0.0003 | - | | 7.0533 | 2250 | 0.0003 | - | | 7.2100 | 2300 | 0.0003 | - | | 7.3668 | 2350 | 0.0003 | - | | 7.5235 | 2400 | 0.0002 | - | | 7.6803 | 2450 | 0.0003 | - | | 7.8370 | 2500 | 0.0003 | - | | 7.9937 | 2550 | 0.0003 | - | | 8.1505 | 2600 | 0.0003 | - | | 8.3072 | 2650 | 0.0003 | - | | 8.4639 | 2700 | 0.0003 | - | | 8.6207 | 2750 | 0.0003 | - | | 8.7774 | 2800 | 0.0004 | - | | 8.9342 | 2850 | 0.0002 | - | | 9.0909 | 2900 | 0.0003 | - | | 9.2476 | 2950 | 0.0004 | - | | 9.4044 | 3000 | 0.0004 | - | | 9.5611 | 3050 | 0.0003 | - | | 9.7179 | 3100 | 0.0004 | - | | 9.8746 | 3150 | 0.0003 | - | ### Framework Versions - Python: 3.10.13 - SetFit: 1.0.3 - Sentence Transformers: 2.6.1 - Transformers: 4.39.1 - PyTorch: 2.1.0 - Datasets: 2.18.0 - Tokenizers: 0.15.2 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```