--- language: - en license: apache-2.0 datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-large-uncased results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: default metrics: - name: precision type: precision value: 0.9504719600222099 - name: recall type: recall value: 0.9574896520863632 - name: f1 type: f1 value: 0.9539679001337494 - name: accuracy type: accuracy value: 0.9885618059637473 --- # bert-large-uncased This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co./bert-large-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - precision: 0.9505 - recall: 0.9575 - f1: 0.9540 - accuracy: 0.9886 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - num_train_epochs: 10 - train_batch_size: 4 - learning_rate: 2e-05 - weight_decay_rate: 0.01 - num_warmup_steps: 0 - fp16: True ### Framework versions - Transformers 4.16.2 - Pytorch 1.8.1+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0