--- license: apache-2.0 tags: - generated_from_trainer language: en widget: - text: "My name is Scott and I live in Columbus." - text: "Apple was founded in 1976 by Steve Jobs, Steve Wozniak and Ronald Wayne." datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-large-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9504719600222099 - name: Recall type: recall value: 0.9574896520863632 - name: F1 type: f1 value: 0.9539679001337494 - name: Accuracy type: accuracy value: 0.9885618059637473 --- # bert-large-uncased-finetuned-ner This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co./bert-large-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0778 - Precision: 0.9505 - Recall: 0.9575 - F1: 0.9540 - Accuracy: 0.9886 ## Model description More information needed #### Limitations and bias This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. Furthermore, the model occassionally tags subword tokens as entities and post-processing of results may be necessary to handle those cases. #### How to use You can use this model with Transformers *pipeline* for NER. ```python from transformers import pipeline from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("Jorgeutd/bert-large-uncased-finetuned-ner") model = AutoModelForTokenClassification.from_pretrained("Jorgeutd/bert-large-uncased-finetuned-ner") nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "My name is Scott and I live in Ohio" ner_results = nlp(example) print(ner_results) ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1997 | 1.0 | 878 | 0.0576 | 0.9316 | 0.9257 | 0.9286 | 0.9837 | | 0.04 | 2.0 | 1756 | 0.0490 | 0.9400 | 0.9513 | 0.9456 | 0.9870 | | 0.0199 | 3.0 | 2634 | 0.0557 | 0.9436 | 0.9540 | 0.9488 | 0.9879 | | 0.0112 | 4.0 | 3512 | 0.0602 | 0.9443 | 0.9569 | 0.9506 | 0.9881 | | 0.0068 | 5.0 | 4390 | 0.0631 | 0.9451 | 0.9589 | 0.9520 | 0.9882 | | 0.0044 | 6.0 | 5268 | 0.0638 | 0.9510 | 0.9567 | 0.9538 | 0.9885 | | 0.003 | 7.0 | 6146 | 0.0722 | 0.9495 | 0.9560 | 0.9527 | 0.9885 | | 0.0016 | 8.0 | 7024 | 0.0762 | 0.9491 | 0.9595 | 0.9543 | 0.9887 | | 0.0018 | 9.0 | 7902 | 0.0769 | 0.9496 | 0.9542 | 0.9519 | 0.9883 | | 0.0009 | 10.0 | 8780 | 0.0778 | 0.9505 | 0.9575 | 0.9540 | 0.9886 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.8.1+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0