File size: 2,446 Bytes
ae6129f b566c06 8fefe6d ae6129f b566c06 ae6129f b566c06 ae6129f b566c06 ae6129f b566c06 ae6129f b566c06 ae6129f b566c06 ae6129f b566c06 ae6129f b566c06 ae6129f b566c06 ae6129f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
---
license: apache-2.0
tags:
- generated_from_trainer
language: en
widget:
- text: "My name is Scott and I live in Columbus. I work at the Hospital."
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: albert-base-v2-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.9252213840603477
- name: Recall
type: recall
value: 0.9329732113328189
- name: F1
type: f1
value: 0.9290811285541773
- name: Accuracy
type: accuracy
value: 0.9848205157332728
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# albert-base-v2-finetuned-ner
This model is a fine-tuned version of [albert-base-v2](https://huggingface.co./albert-base-v2) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0626
- Precision: 0.9252
- Recall: 0.9330
- F1: 0.9291
- Accuracy: 0.9848
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 220 | 0.0863 | 0.8827 | 0.8969 | 0.8898 | 0.9773 |
| No log | 2.0 | 440 | 0.0652 | 0.8951 | 0.9199 | 0.9073 | 0.9809 |
| 0.1243 | 3.0 | 660 | 0.0626 | 0.9191 | 0.9208 | 0.9200 | 0.9827 |
| 0.1243 | 4.0 | 880 | 0.0585 | 0.9227 | 0.9281 | 0.9254 | 0.9843 |
| 0.0299 | 5.0 | 1100 | 0.0626 | 0.9252 | 0.9330 | 0.9291 | 0.9848 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.8.1+cu111
- Datasets 1.18.3
- Tokenizers 0.11.0
|