File size: 28,720 Bytes
394e8ba
 
 
 
 
 
 
 
 
 
 
 
 
 
f31fb52
394e8ba
3a46362
 
394e8ba
 
 
 
 
3a46362
394e8ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f31fb52
394e8ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f31fb52
394e8ba
 
 
 
 
 
 
 
 
625b8ab
394e8ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f31fb52
394e8ba
f31fb52
 
 
394e8ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f31fb52
394e8ba
f31fb52
394e8ba
f31fb52
 
 
394e8ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
625b8ab
 
 
 
 
 
394e8ba
 
 
625b8ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
394e8ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f31fb52
 
394e8ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f31fb52
394e8ba
 
 
 
 
 
 
 
 
 
 
f31fb52
 
394e8ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
import torch
import torch.amp.autocast_mode
import os
import sys
import logging
import warnings
import argparse
from PIL import Image
from pathlib import Path
from tqdm import tqdm
from torch import nn
from transformers import AutoModel, AutoProcessor, AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast, AutoModelForCausalLM
from typing import List, Union
import torchvision.transforms.functional as TVF
from peft import PeftModel
import gc
import sys
IS_COLAB = 'google.colab' in sys.modules

# Constants
IMAGE_EXTENSIONS = ('.jpg', '.jpeg', '.png', '.bmp', '.webp')
HF_TOKEN = os.environ.get("HF_TOKEN", None)
BASE_DIR = Path(__file__).resolve().parent # Define the base directory
CHECKPOINT_PATH = BASE_DIR / Path("cgrkzexw-599808") if not IS_COLAB else Path("/content/joy-caption-alpha-two-cli-mod/cgrkzexw-599808")
CLIP_PATH = "google/siglip-so400m-patch14-384"
DEFAULT_MODEL_PATH = "unsloth/Meta-Llama-3.1-8B-bnb-4bit"
#DEFAULT_MODEL_PATH = "Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2" # Works better but full weight.
LORA_PATH = CHECKPOINT_PATH / "text_model"
CAPTION_TYPE_MAP = {
    "Descriptive": [
        "Write a descriptive caption for this image in a formal tone.",
        "Write a descriptive caption for this image in a formal tone within {word_count} words.",
        "Write a {length} descriptive caption for this image in a formal tone.",
    ],
    "Descriptive (Informal)": [
        "Write a descriptive caption for this image in a casual tone.",
        "Write a descriptive caption for this image in a casual tone within {word_count} words.",
        "Write a {length} descriptive caption for this image in a casual tone.",
    ],
    "Training Prompt": [
        "Write a stable diffusion prompt for this image.",
        "Write a stable diffusion prompt for this image within {word_count} words.",
        "Write a {length} stable diffusion prompt for this image.",
    ],
    "MidJourney": [
        "Write a MidJourney prompt for this image.",
        "Write a MidJourney prompt for this image within {word_count} words.",
        "Write a {length} MidJourney prompt for this image.",
    ],
    "Booru tag list": [
        "Write a list of Booru tags for this image.",
        "Write a list of Booru tags for this image within {word_count} words.",
        "Write a {length} list of Booru tags for this image.",
    ],
    "Booru-like tag list": [
        "Write a list of Booru-like tags for this image.",
        "Write a list of Booru-like tags for this image within {word_count} words.",
        "Write a {length} list of Booru-like tags for this image.",
    ],
    "Art Critic": [
        "Analyze this image like an art critic would with information about its composition, style, symbolism, the use of color, light, any artistic movement it might belong to, etc.",
        "Analyze this image like an art critic would with information about its composition, style, symbolism, the use of color, light, any artistic movement it might belong to, etc. Keep it within {word_count} words.",
        "Analyze this image like an art critic would with information about its composition, style, symbolism, the use of color, light, any artistic movement it might belong to, etc. Keep it {length}.",
    ],
    "Product Listing": [
        "Write a caption for this image as though it were a product listing.",
        "Write a caption for this image as though it were a product listing. Keep it under {word_count} words.",
        "Write a {length} caption for this image as though it were a product listing.",
    ],
    "Social Media Post": [
        "Write a caption for this image as if it were being used for a social media post.",
        "Write a caption for this image as if it were being used for a social media post. Limit the caption to {word_count} words.",
        "Write a {length} caption for this image as if it were being used for a social media post.",
    ],
}

class ImageAdapter(nn.Module):
    def __init__(self, input_features: int, output_features: int, ln1: bool, pos_emb: bool, num_image_tokens: int, deep_extract: bool):
        super().__init__()
        self.deep_extract = deep_extract

        if self.deep_extract:
            input_features = input_features * 5

        self.linear1 = nn.Linear(input_features, output_features)
        self.activation = nn.GELU()
        self.linear2 = nn.Linear(output_features, output_features)
        self.ln1 = nn.Identity() if not ln1 else nn.LayerNorm(input_features)
        self.pos_emb = None if not pos_emb else nn.Parameter(torch.zeros(num_image_tokens, input_features))

        # Other tokens (<|image_start|>, <|image_end|>, <|eot_id|>)
        self.other_tokens = nn.Embedding(3, output_features)
        self.other_tokens.weight.data.normal_(mean=0.0, std=0.02)   # Matches HF's implementation of llama3

    def forward(self, vision_outputs: torch.Tensor):
        if self.deep_extract:
            x = torch.concat((
                vision_outputs[-2],
                vision_outputs[3],
                vision_outputs[7],
                vision_outputs[13],
                vision_outputs[20],
            ), dim=-1)
            assert len(x.shape) == 3, f"Expected 3, got {len(x.shape)}"  # batch, tokens, features
            assert x.shape[-1] == vision_outputs[-2].shape[-1] * 5, f"Expected {vision_outputs[-2].shape[-1] * 5}, got {x.shape[-1]}"
        else:
            x = vision_outputs[-2]

        x = self.ln1(x)

        if self.pos_emb is not None:
            assert x.shape[-2:] == self.pos_emb.shape, f"Expected {self.pos_emb.shape}, got {x.shape[-2:]}"
            x = x + self.pos_emb

        x = self.linear1(x)
        x = self.activation(x)
        x = self.linear2(x)

        # <|image_start|>, IMAGE, <|image_end|>
        other_tokens = self.other_tokens(torch.tensor([0, 1], device=self.other_tokens.weight.device).expand(x.shape[0], -1))
        assert other_tokens.shape == (x.shape[0], 2, x.shape[2]), f"Expected {(x.shape[0], 2, x.shape[2])}, got {other_tokens.shape}"
        x = torch.cat((other_tokens[:, 0:1], x, other_tokens[:, 1:2]), dim=1)

        return x

    def get_eot_embedding(self):
        return self.other_tokens(torch.tensor([2], device=self.other_tokens.weight.device)).squeeze(0)


# Global Variables
IS_NF4 = True
IS_LORA = True
MODEL_PATH = DEFAULT_MODEL_PATH
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Running on {device}")

warnings.filterwarnings("ignore", category=UserWarning)
logging.getLogger("transformers").setLevel(logging.ERROR)

class ImageAdapter(nn.Module):
    def __init__(self, input_features: int, output_features: int, ln1: bool, pos_emb: bool, num_image_tokens: int, deep_extract: bool):
        super().__init__()
        self.deep_extract = deep_extract

        if self.deep_extract:
            input_features = input_features * 5

        self.linear1 = nn.Linear(input_features, output_features)
        self.activation = nn.GELU()
        self.linear2 = nn.Linear(output_features, output_features)
        self.ln1 = nn.Identity() if not ln1 else nn.LayerNorm(input_features)
        self.pos_emb = None if not pos_emb else nn.Parameter(torch.zeros(num_image_tokens, input_features))

        # Mode token
        #self.mode_token = nn.Embedding(n_modes, output_features)
        #self.mode_token.weight.data.normal_(mean=0.0, std=0.02)   # Matches HF's implementation of llama3

        # Other tokens (<|image_start|>, <|image_end|>, <|eot_id|>)
        self.other_tokens = nn.Embedding(3, output_features)
        self.other_tokens.weight.data.normal_(mean=0.0, std=0.02)   # Matches HF's implementation of llama3

    def forward(self, vision_outputs: torch.Tensor):
        if self.deep_extract:
            x = torch.concat((
                vision_outputs[-2],
                vision_outputs[3],
                vision_outputs[7],
                vision_outputs[13],
                vision_outputs[20],
            ), dim=-1)
            assert len(x.shape) == 3, f"Expected 3, got {len(x.shape)}"  # batch, tokens, features
            assert x.shape[-1] == vision_outputs[-2].shape[-1] * 5, f"Expected {vision_outputs[-2].shape[-1] * 5}, got {x.shape[-1]}"
        else:
            x = vision_outputs[-2]

        x = self.ln1(x)

        if self.pos_emb is not None:
            assert x.shape[-2:] == self.pos_emb.shape, f"Expected {self.pos_emb.shape}, got {x.shape[-2:]}"
            x = x + self.pos_emb

        x = self.linear1(x)
        x = self.activation(x)
        x = self.linear2(x)

        # Mode token
        #mode_token = self.mode_token(mode)
        #assert mode_token.shape == (x.shape[0], mode_token.shape[1], x.shape[2]), f"Expected {(x.shape[0], 1, x.shape[2])}, got {mode_token.shape}"
        #x = torch.cat((x, mode_token), dim=1)

        # <|image_start|>, IMAGE, <|image_end|>
        other_tokens = self.other_tokens(torch.tensor([0, 1], device=self.other_tokens.weight.device).expand(x.shape[0], -1))
        assert other_tokens.shape == (x.shape[0], 2, x.shape[2]), f"Expected {(x.shape[0], 2, x.shape[2])}, got {other_tokens.shape}"
        x = torch.cat((other_tokens[:, 0:1], x, other_tokens[:, 1:2]), dim=1)

        return x

    def get_eot_embedding(self):
        return self.other_tokens(torch.tensor([2], device=self.other_tokens.weight.device)).squeeze(0)

def load_models():
    global MODEL_PATH, IS_NF4, IS_LORA
    try:
        if IS_NF4:
            from transformers import BitsAndBytesConfig
            nf4_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_type="nf4",
                                            bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.bfloat16)
            print("Loading in NF4")
            print("Loading CLIP πŸ“Ž")
            clip_processor = AutoProcessor.from_pretrained(CLIP_PATH)
            clip_model = AutoModel.from_pretrained(CLIP_PATH).vision_model
            assert (CHECKPOINT_PATH / "clip_model.pt").exists()
            if (CHECKPOINT_PATH / "clip_model.pt").exists():
                print("Loading VLM's custom vision model πŸ“Ž")
                checkpoint = torch.load(CHECKPOINT_PATH / "clip_model.pt", map_location='cpu', weights_only=False)
                checkpoint = {k.replace("_orig_mod.module.", ""): v for k, v in checkpoint.items()}
                clip_model.load_state_dict(checkpoint)
                del checkpoint
            clip_model.eval().requires_grad_(False).to(device)

            print("Loading tokenizer πŸͺ™")
            tokenizer = AutoTokenizer.from_pretrained(CHECKPOINT_PATH / "text_model", use_fast=True)
            assert isinstance(tokenizer, (PreTrainedTokenizer, PreTrainedTokenizerFast)), f"Tokenizer is of type {type(tokenizer)}"

            print(f"Loading LLM: {MODEL_PATH} πŸ€–")
            text_model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, quantization_config=nf4_config, device_map=device, torch_dtype=torch.bfloat16).eval()

            if False and IS_LORA and LORA_PATH.exists(): # omitted
                print("Loading VLM's custom text model πŸ€–")
                text_model = PeftModel.from_pretrained(model=text_model, model_id=LORA_PATH, device_map=device, quantization_config=nf4_config)
                text_model = text_model.merge_and_unload(safe_merge=True) # to avoid PEFT bug https://github.com/huggingface/transformers/issues/28515
            else: print("VLM's custom text model isn't loaded πŸ€–")

            print("Loading image adapter πŸ–ΌοΈ")
            image_adapter = ImageAdapter(clip_model.config.hidden_size, text_model.config.hidden_size, False, False, 38, False).eval().to("cpu")
            image_adapter.load_state_dict(torch.load(CHECKPOINT_PATH / "image_adapter.pt", map_location="cpu", weights_only=False))
            image_adapter.eval().to(device)
        else:
            print("Loading in bfloat16")
            print("Loading CLIP πŸ“Ž")
            clip_processor = AutoProcessor.from_pretrained(CLIP_PATH)
            clip_model = AutoModel.from_pretrained(CLIP_PATH).vision_model
            if (CHECKPOINT_PATH / "clip_model.pt").exists():
                print("Loading VLM's custom vision model πŸ“Ž")
                checkpoint = torch.load(CHECKPOINT_PATH / "clip_model.pt", map_location='cpu', weights_only=False)
                checkpoint = {k.replace("_orig_mod.module.", ""): v for k, v in checkpoint.items()}
                clip_model.load_state_dict(checkpoint)
                del checkpoint
            clip_model.eval().requires_grad_(False).to(device)

            print("Loading tokenizer πŸͺ™")
            tokenizer = AutoTokenizer.from_pretrained(CHECKPOINT_PATH / "text_model", use_fast=True)
            assert isinstance(tokenizer, (PreTrainedTokenizer, PreTrainedTokenizerFast)), f"Tokenizer is of type {type(tokenizer)}"

            print(f"Loading LLM: {MODEL_PATH} πŸ€–")
            text_model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, device_map="auto", torch_dtype=torch.bfloat16).eval() # device_map="auto" may cause LoRA issue

            if IS_LORA and LORA_PATH.exists():
                print("Loading VLM's custom text model πŸ€–")
                text_model = PeftModel.from_pretrained(model=text_model, model_id=LORA_PATH, device_map=device)
                text_model = text_model.merge_and_unload(safe_merge=True) # to avoid PEFT bug https://github.com/huggingface/transformers/issues/28515
            else: print("VLM's custom text model isn't loaded πŸ€–")

            print("Loading image adapter πŸ–ΌοΈ")
            image_adapter = ImageAdapter(clip_model.config.hidden_size, text_model.config.hidden_size, False, False, 38, False).eval().to("cpu")
            image_adapter.load_state_dict(torch.load(CHECKPOINT_PATH / "image_adapter.pt", map_location="cpu", weights_only=False))
    except Exception as e:
        print(f"Error loading models: {e}")
        sys.exit(1)
    finally:
        torch.cuda.empty_cache()
        gc.collect()
    return clip_processor, clip_model, tokenizer, text_model, image_adapter

@torch.inference_mode()
def stream_chat(input_images: List[Image.Image], caption_type: str, caption_length: Union[str, int], extra_options: list[str], name_input: str, custom_prompt: str,

                max_new_tokens: int, top_p: float, temperature: float, batch_size: int, pbar: tqdm, models: tuple) -> List[str]:
    global MODEL_PATH
    clip_processor, clip_model, tokenizer, text_model, image_adapter = models
    torch.cuda.empty_cache()
    all_captions = []

    # 'any' means no length specified
    length = None if caption_length == "any" else caption_length

    if isinstance(length, str):
        try:
            length = int(length)
        except ValueError:
            pass
    
    # Build prompt
    if length is None:
        map_idx = 0
    elif isinstance(length, int):
        map_idx = 1
    elif isinstance(length, str):
        map_idx = 2
    else:
        raise ValueError(f"Invalid caption length: {length}")
    
    prompt_str = CAPTION_TYPE_MAP[caption_type][map_idx]

    # Add extra options
    if len(extra_options) > 0:
        prompt_str += " " + " ".join(extra_options)
    
    # Add name, length, word_count
    prompt_str = prompt_str.format(name=name_input, length=caption_length, word_count=caption_length)

    if custom_prompt.strip() != "":
        prompt_str = custom_prompt.strip()
    
    # For debugging
    print(f"Prompt: {prompt_str}")

    for i in range(0, len(input_images), batch_size):
        batch = input_images[i:i+batch_size]
        
        for input_image in input_images:
            try:
                # Preprocess image
                # NOTE: I found the default processor for so400M to have worse results than just using PIL directly
                #image = clip_processor(images=input_image, return_tensors='pt').pixel_values
                image = input_image.resize((384, 384), Image.LANCZOS)
                pixel_values = TVF.pil_to_tensor(image).unsqueeze(0) / 255.0
                pixel_values = TVF.normalize(pixel_values, [0.5], [0.5])
                pixel_values = pixel_values.to(device)
            except ValueError as e:
                print(f"Error processing image: {e}")
                print("Skipping this image and continuing...")
                continue

            # Embed image
            # This results in Batch x Image Tokens x Features
            with torch.amp.autocast_mode.autocast(device, enabled=True):
                vision_outputs = clip_model(pixel_values=pixel_values, output_hidden_states=True)
                image_features = vision_outputs.hidden_states
                embedded_images = image_adapter(image_features).to(device)

            # Build the conversation
            convo = [
                {
                    "role": "system",
                    "content": "You are a helpful image captioner.",
                },
                {
                    "role": "user",
                    "content": prompt_str,
                },
            ]

            # Format the conversation
            convo_string = tokenizer.apply_chat_template(convo, tokenize = False, add_generation_prompt = True)
            assert isinstance(convo_string, str)

            # Tokenize the conversation
            # prompt_str is tokenized separately so we can do the calculations below
            convo_tokens = tokenizer.encode(convo_string, return_tensors="pt", add_special_tokens=False, truncation=False)
            prompt_tokens = tokenizer.encode(prompt_str, return_tensors="pt", add_special_tokens=False, truncation=False)
            assert isinstance(convo_tokens, torch.Tensor) and isinstance(prompt_tokens, torch.Tensor)
            convo_tokens = convo_tokens.squeeze(0)   # Squeeze just to make the following easier
            prompt_tokens = prompt_tokens.squeeze(0)

            # Calculate where to inject the image
            eot_id_indices = (convo_tokens == tokenizer.convert_tokens_to_ids("<|eot_id|>")).nonzero(as_tuple=True)[0].tolist()
            assert len(eot_id_indices) == 2, f"Expected 2 <|eot_id|> tokens, got {len(eot_id_indices)}"

            preamble_len = eot_id_indices[1] - prompt_tokens.shape[0]   # Number of tokens before the prompt

            # Embed the tokens
            convo_embeds = text_model.model.embed_tokens(convo_tokens.unsqueeze(0).to(device))

            # Construct the input
            input_embeds = torch.cat([
                convo_embeds[:, :preamble_len],   # Part before the prompt
                embedded_images.to(dtype=convo_embeds.dtype),   # Image
                convo_embeds[:, preamble_len:],   # The prompt and anything after it
            ], dim=1).to(device)

            input_ids = torch.cat([
                convo_tokens[:preamble_len].unsqueeze(0),
                torch.zeros((1, embedded_images.shape[1]), dtype=torch.long),   # Dummy tokens for the image (TODO: Should probably use a special token here so as not to confuse any generation algorithms that might be inspecting the input)
                convo_tokens[preamble_len:].unsqueeze(0),
            ], dim=1).to(device)
            attention_mask = torch.ones_like(input_ids)

            # Debugging
            #print(f"Input to model: {repr(tokenizer.decode(input_ids[0]))}")

            generate_ids = text_model.generate(input_ids=input_ids, inputs_embeds=input_embeds, attention_mask=attention_mask, do_sample=True, 
                                            suppress_tokens=None, max_new_tokens=max_new_tokens, top_p=top_p, temperature=temperature)

            # Trim off the prompt
            generate_ids = generate_ids[:, input_ids.shape[1]:]
            if generate_ids[0][-1] == tokenizer.eos_token_id or generate_ids[0][-1] == tokenizer.convert_tokens_to_ids("<|eot_id|>"):
                generate_ids = generate_ids[:, :-1]

            caption = tokenizer.batch_decode(generate_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False)[0]
            all_captions.append(caption.strip())

        if pbar:
            pbar.update(len(batch))

    return all_captions

def process_directory(input_dir: Path, output_dir: Path, caption_type: str, caption_length: Union[str, int], extra_options: list[str], name_input: str, custom_prompt: str,

                      max_new_tokens: int, top_p: float, temperature: float, batch_size: int, models: tuple):
    output_dir.mkdir(parents=True, exist_ok=True)
    image_files = [f for f in input_dir.iterdir() if f.suffix.lower() in IMAGE_EXTENSIONS]
    images_to_process = [f for f in image_files if not (output_dir / f"{f.stem}.txt").exists()]

    if not images_to_process:
        print("No new images to process.")
        return

    with tqdm(total=len(images_to_process), desc="Processing images", unit="image") as pbar:
        for i in range(0, len(images_to_process), batch_size):
            batch_files = images_to_process[i:i+batch_size]
            batch_images = [Image.open(f).convert('RGB') for f in batch_files]

            captions = stream_chat(batch_images, caption_type, caption_length, extra_options, name_input, custom_prompt,
                                   max_new_tokens, top_p, temperature, batch_size, pbar, models)
            
            for file, caption in zip(batch_files, captions):
                with open(output_dir / f"{file.stem}.txt", 'w', encoding='utf-8') as f:
                    f.write(caption)

            for img in batch_images:
                img.close()

def parse_arguments():
    parser = argparse.ArgumentParser(description="Process images and generate captions.")
    parser.add_argument("input", nargs='+', help="Input image file or directory (or multiple directories)")
    parser.add_argument("--output", help="Output directory (optional)")
    parser.add_argument("--bs", type=int, default=4, help="Batch size (default: 4)")
    parser.add_argument("--type", type=str, default="Descriptive",
                        choices=["Descriptive", "Descriptive (Informal)", "Training Prompt", "MidJourney", "Booru tag list", "Booru-like tag list", "Art Critic", "Product Listing", "Social Media Post"],
                        help='Caption Type (default: "Descriptive")')
    parser.add_argument("--len", default="long",
                        choices=["any", "very short", "short", "medium-length", "long", "very long"] + [str(i) for i in range(20, 261, 10)],
                        help='Caption Length (default: "long")')
    parser.add_argument("--extra", default=[], type=list[str], help='Extra Options',
                        choices=[
                            "If there is a person/character in the image you must refer to them as {name}.",
                            "Do NOT include information about people/characters that cannot be changed (like ethnicity, gender, etc), but do still include changeable attributes (like hair style).",
                            "Include information about lighting.",
                            "Include information about camera angle.",
                            "Include information about whether there is a watermark or not.",
                            "Include information about whether there are JPEG artifacts or not.",
                            "If it is a photo you MUST include information about what camera was likely used and details such as aperture, shutter speed, ISO, etc.",
                            "Do NOT include anything sexual; keep it PG.",
                            "Do NOT mention the image's resolution.",
                            "You MUST include information about the subjective aesthetic quality of the image from low to very high.",
                            "Include information on the image's composition style, such as leading lines, rule of thirds, or symmetry.",
                            "Do NOT mention any text that is in the image.",
                            "Specify the depth of field and whether the background is in focus or blurred.",
                            "If applicable, mention the likely use of artificial or natural lighting sources.",
                            "Do NOT use any ambiguous language.",
                            "Include whether the image is sfw, suggestive, or nsfw.",
                            "ONLY describe the most important elements of the image."
                        ])
    parser.add_argument("--name", type=str, default="", help='Person/Character Name (if applicable)')
    parser.add_argument("--prompt", type=str, default="", help='Custom Prompt (optional, will override all other settings)')
    parser.add_argument("--model", type=str, default=DEFAULT_MODEL_PATH,
                        help='Huggingface LLM repo (default: "unsloth/Meta-Llama-3.1-8B-bnb-4bit")')
    parser.add_argument("--bf16", action="store_true", default=False, help="Use bfloat16 (default: NF4)")
    parser.add_argument("--nolora", action="store_true", default=False, help="Disable VLM's custom text model (default: Enable)")
    parser.add_argument("--tokens", type=int, default=300, help="Max tokens (default: 300)")
    parser.add_argument("--topp", type=float, default=0.9, help="Top-P (default: 0.9)")
    parser.add_argument("--temp", type=float, default=0.6, help="Temperature (default: 0.6)")
    return parser.parse_args()

def is_valid_repo(repo_id):
    from huggingface_hub import HfApi
    import re
    try:
        if not re.fullmatch(r'^[^/,\s\"\']+/[^/,\s\"\']+$', repo_id): return False
        api = HfApi()
        if api.repo_exists(repo_id=repo_id): return True
        else: return False
    except Exception as e:
        print(f"Failed to connect {repo_id}. {e}")
        return False

def main():
    global MODEL_PATH, IS_NF4, IS_LORA
    args = parse_arguments()
    input_paths = [Path(input_path) for input_path in args.input]
    batch_size = args.bs
    caption_type = args.type
    caption_length = args.len
    extra_options = args.extra
    name_input = args.name
    custom_prompt = args.prompt
    max_new_tokens = args.tokens
    top_p = args.topp
    temperature = args.temp
    IS_NF4 = False if args.bf16 else True
    IS_LORA = False if args.nolora else True
    if is_valid_repo(args.model): MODEL_PATH = args.model
    else: sys.exit(1)
    models = load_models()

    for input_path in input_paths:
        if input_path.is_file() and input_path.suffix.lower() in IMAGE_EXTENSIONS:
            output_path = input_path.with_suffix('.txt')
            print(f"Processing single image 🎞️: {input_path.name}")
            with tqdm(total=1, desc="Processing image", unit="image") as pbar:
                captions = stream_chat([Image.open(input_path).convert('RGB')], caption_type, caption_length, extra_options, name_input, custom_prompt,
                                       max_new_tokens, top_p, temperature, 1, pbar, models)
                with open(output_path, 'w', encoding='utf-8') as f:
                    f.write(captions[0])
            print(f"Output saved to {output_path}")
        elif input_path.is_dir():
            output_path = Path(args.output) if args.output else input_path
            print(f"Processing directory πŸ“: {input_path}")
            print(f"Output directory πŸ“¦: {output_path}")
            print(f"Batch size πŸ—„οΈ: {batch_size}")
            process_directory(input_path, output_path, caption_type, caption_length, extra_options, name_input, custom_prompt,
                              max_new_tokens, top_p, temperature, batch_size, models)
        else:
            print(f"Invalid input: {input_path}")
            print("Skipping...")

    if not input_paths:
        print("Usage:")
        print("For single image: python app.py [image_file] [--bs batch_size]")
        print("For directory (same input/output): python app.py [directory] [--bs batch_size]")
        print("For directory (separate input/output): python app.py [directory] --output [output_directory] [--bs batch_size]")
        print("For multiple directories: python app.py [directory1] [directory2] ... [--output output_directory] [--bs batch_size]")
        sys.exit(1)

if __name__ == "__main__":
    main()