--- library_name: transformers datasets: - Joctor/cn_bokete_oogiri_caption base_model: - Qwen/Qwen2-VL-7B-Instruct pipeline_tag: image-to-text --- # Model Card for Model ID AI大喜利,简介 https://www.gcores.com/articles/188405 ## How to Get Started with the Model Use the code below to get started with the model. ```python from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor from qwen_vl_utils import process_vision_info model_id = "Joctor/qwen2-vl-7b-instruct-ogiri" # default: Load the model on the available device(s) model = Qwen2VLForConditionalGeneration.from_pretrained( model_id, torch_dtype="auto", device_map="auto" ) # default processer processor = AutoProcessor.from_pretrained(model_id) messages = [ { "role": "user", "content": [ { "type": "image", "image": "path/to/image", }, {"type": "text", "text": "根据图片给出有趣巧妙的回答"}, ], } ] # Preparation for inference text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to("cuda") # Inference: Generation of the output generated_ids = model.generate(**inputs, max_new_tokens=128) generated_ids_trimmed = [ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) print(output_text) ``` ## Training Details ### Training Data https://huggingface.co./datasets/Joctor/cn_bokete_oogiri_caption ### Training Procedure 基础模型:qwen2vl 微调方式:数据量充足,采用SFT微调 微调参数:max_length=1024(短就是好!), num_train_epochs=1, per_device_train_batch_size=1, gradient_accumulation_steps=1 训练设备:10 * 4090D 训练时长:22小时