--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: [] --- # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co./distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0664 - Precision: 0.9345 - Recall: 0.9421 - F1: 0.9383 - Accuracy: 0.9852 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0303 | 1.0 | 878 | 0.0579 | 0.9295 | 0.9352 | 0.9324 | 0.9838 | | 0.0167 | 2.0 | 1756 | 0.0619 | 0.9333 | 0.9421 | 0.9376 | 0.9849 | | 0.0114 | 3.0 | 2634 | 0.0664 | 0.9345 | 0.9421 | 0.9383 | 0.9852 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.2.0 - Datasets 2.17.1 - Tokenizers 0.13.3