File size: 1,758 Bytes
7ed57b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad908c9
7ed57b7
ad908c9
 
 
 
 
7ed57b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad908c9
 
 
7ed57b7
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: distilbert-base-uncased-finetuned-ner
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-base-uncased-finetuned-ner

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co./distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1242
- Precision: 0.7628
- Recall: 0.7790
- F1: 0.7708
- Accuracy: 0.9658

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0742        | 1.0   | 2531 | 0.1280          | 0.7336    | 0.7800 | 0.7561 | 0.9628   |
| 0.0628        | 2.0   | 5062 | 0.1235          | 0.7665    | 0.7686 | 0.7675 | 0.9656   |
| 0.0581        | 3.0   | 7593 | 0.1242          | 0.7628    | 0.7790 | 0.7708 | 0.9658   |


### Framework versions

- Transformers 4.32.1
- Pytorch 2.2.0
- Datasets 2.17.1
- Tokenizers 0.13.3