Jiahuita
commited on
Commit
·
d6be1a6
1
Parent(s):
1d3834b
Add inference widget and pipeline configuration
Browse files- README.md +6 -14
- pipeline.py +36 -0
- requirements.txt +7 -2
README.md
CHANGED
@@ -1,24 +1,16 @@
|
|
1 |
---
|
|
|
2 |
license: mit
|
3 |
tags:
|
4 |
- text-classification
|
5 |
-
- tensorflow
|
6 |
- news-classification
|
7 |
pipeline_tag: text-classification
|
|
|
8 |
widget:
|
9 |
-
|
10 |
-
|
11 |
-
-
|
12 |
-
|
13 |
-
- name: news-source-classifier
|
14 |
-
results:
|
15 |
-
- task:
|
16 |
-
type: text-classification
|
17 |
-
name: News Source Classification
|
18 |
-
metrics:
|
19 |
-
- type: accuracy
|
20 |
-
value: 0.82
|
21 |
-
name: Test Accuracy
|
22 |
---
|
23 |
|
24 |
# News Source Classifier
|
|
|
1 |
---
|
2 |
+
language: en
|
3 |
license: mit
|
4 |
tags:
|
5 |
- text-classification
|
|
|
6 |
- news-classification
|
7 |
pipeline_tag: text-classification
|
8 |
+
inference: true
|
9 |
widget:
|
10 |
+
- example_title: "Write a news headline to classify"
|
11 |
+
text: "Wife of murdered Minnesota pastor hired 3 men to kill husband after affair: police"
|
12 |
+
- example_title: "Another example"
|
13 |
+
text: "Scientists discover breakthrough in renewable energy research"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
---
|
15 |
|
16 |
# News Source Classifier
|
pipeline.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# pipeline.py
|
2 |
+
from transformers import Pipeline
|
3 |
+
import tensorflow as tf
|
4 |
+
from tensorflow.keras.models import load_model
|
5 |
+
from tensorflow.keras.preprocessing.text import tokenizer_from_json
|
6 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
7 |
+
import json
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
class NewsClassifierPipeline(Pipeline):
|
11 |
+
def __init__(self):
|
12 |
+
super().__init__()
|
13 |
+
self.model = load_model('news_classifier.h5')
|
14 |
+
with open('tokenizer.json') as f:
|
15 |
+
tokenizer_data = json.load(f)
|
16 |
+
self.tokenizer = tokenizer_from_json(tokenizer_data)
|
17 |
+
|
18 |
+
def preprocess(self, text):
|
19 |
+
sequence = self.tokenizer.texts_to_sequences([text])
|
20 |
+
padded = pad_sequences(sequence)
|
21 |
+
return padded
|
22 |
+
|
23 |
+
def _forward(self, texts):
|
24 |
+
processed = self.preprocess(texts)
|
25 |
+
predictions = self.model.predict(processed)
|
26 |
+
scores = tf.nn.softmax(predictions, axis=1)
|
27 |
+
|
28 |
+
predicted_class = np.argmax(predictions)
|
29 |
+
score = float(np.max(scores))
|
30 |
+
|
31 |
+
label = 'foxnews' if predicted_class == 0 else 'nbc'
|
32 |
+
|
33 |
+
return [{'label': label, 'score': score}]
|
34 |
+
|
35 |
+
def postprocess(self, model_outputs):
|
36 |
+
return model_outputs
|
requirements.txt
CHANGED
@@ -1,8 +1,13 @@
|
|
1 |
-
tensorflow
|
|
|
|
|
|
|
2 |
fastapi==0.68.1
|
3 |
uvicorn==0.15.0
|
4 |
numpy>=1.19.2
|
5 |
pydantic==1.8.2
|
6 |
python-multipart==0.0.5
|
7 |
scikit-learn>=0.24.2
|
8 |
-
joblib>=1.1.0
|
|
|
|
|
|
1 |
+
tensorflow-macos>=2.10.0
|
2 |
+
#tensorflow==2.10.0
|
3 |
+
transformers>=4.30.0
|
4 |
+
torch>=2.0.0
|
5 |
fastapi==0.68.1
|
6 |
uvicorn==0.15.0
|
7 |
numpy>=1.19.2
|
8 |
pydantic==1.8.2
|
9 |
python-multipart==0.0.5
|
10 |
scikit-learn>=0.24.2
|
11 |
+
joblib>=1.1.0
|
12 |
+
sentencepiece
|
13 |
+
protobuf
|