--- license: mit base_model: xlnet-large-cased tags: - generated_from_trainer metrics: - f1 - recall - precision model-index: - name: task2_xlnet-large-cased_3_4_2e-05_0.01 results: [] --- # task2_xlnet-large-cased_3_4_2e-05_0.01 This model is a fine-tuned version of [xlnet-large-cased](https://huggingface.co./xlnet-large-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9482 - F1: 0.7790 - Recall: 0.7790 - Precision: 0.7790 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Recall | Precision | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:---------:| | 0.8074 | 1.0 | 745 | 0.7084 | 0.7574 | 0.7574 | 0.7574 | | 0.7665 | 2.0 | 1490 | 0.7881 | 0.7628 | 0.7628 | 0.7628 | | 0.6739 | 3.0 | 2235 | 0.9482 | 0.7790 | 0.7790 | 0.7790 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.3 - Tokenizers 0.13.3