--- base_model: vinai/bertweet-base tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: bertweet-base_epoch3_batch4_lr2e-05_w0.01 results: [] --- # bertweet-base_epoch3_batch4_lr2e-05_w0.01 This model is a fine-tuned version of [vinai/bertweet-base](https://huggingface.co./vinai/bertweet-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5753 - Accuracy: 0.8687 - F1: 0.8275 - Precision: 0.8109 - Recall: 0.8448 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.5235 | 1.0 | 788 | 0.4170 | 0.8643 | 0.8076 | 0.8562 | 0.7642 | | 0.3755 | 2.0 | 1576 | 0.5068 | 0.8699 | 0.8272 | 0.8187 | 0.8358 | | 0.2978 | 3.0 | 2364 | 0.5753 | 0.8687 | 0.8275 | 0.8109 | 0.8448 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.3 - Tokenizers 0.13.3