File size: 1,674 Bytes
fe82d11 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
license: mit
base_model: xlnet-base-cased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: baseline_xlnet-base-cased_epoch2_batch2_lr2e-05_w0.01
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# baseline_xlnet-base-cased_epoch2_batch2_lr2e-05_w0.01
This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co./xlnet-base-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5189
- Accuracy: 0.8854
- F1: 0.8442
- Precision: 0.8558
- Recall: 0.8328
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.7846 | 1.0 | 1575 | 0.6591 | 0.8343 | 0.7453 | 0.872 | 0.6507 |
| 0.536 | 2.0 | 3150 | 0.5189 | 0.8854 | 0.8442 | 0.8558 | 0.8328 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.2
- Tokenizers 0.13.3
|