--- language: - en license: mit tags: - generated_from_trainer datasets: - glue metrics: - spearmanr model-index: - name: roberta-base-stsb results: - task: name: Text Classification type: text-classification dataset: name: GLUE STSB type: glue args: stsb metrics: - name: Spearmanr type: spearmanr value: 0.907904999413384 --- # roberta-base-stsb This model is a fine-tuned version of [roberta-base](https://huggingface.co./roberta-base) on the GLUE STSB dataset. It achieves the following results on the evaluation set: - Loss: 0.4155 - Pearson: 0.9101 - Spearmanr: 0.9079 - Combined Score: 0.9090 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|:--------------:| | No log | 1.0 | 360 | 0.6202 | 0.8787 | 0.8813 | 0.8800 | | 1.6425 | 2.0 | 720 | 0.4864 | 0.9008 | 0.8992 | 0.9000 | | 0.3629 | 3.0 | 1080 | 0.4201 | 0.9043 | 0.9016 | 0.9030 | | 0.3629 | 4.0 | 1440 | 0.4686 | 0.9052 | 0.9003 | 0.9027 | | 0.2212 | 5.0 | 1800 | 0.4622 | 0.9061 | 0.9031 | 0.9046 | | 0.1556 | 6.0 | 2160 | 0.3952 | 0.9086 | 0.9065 | 0.9075 | | 0.1162 | 7.0 | 2520 | 0.4271 | 0.9081 | 0.9070 | 0.9075 | | 0.1162 | 8.0 | 2880 | 0.4169 | 0.9094 | 0.9075 | 0.9085 | | 0.0887 | 9.0 | 3240 | 0.4383 | 0.9091 | 0.9074 | 0.9083 | | 0.0717 | 10.0 | 3600 | 0.4155 | 0.9101 | 0.9079 | 0.9090 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1