--- language: - en license: mit tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: roberta-base-qqp results: - task: name: Text Classification type: text-classification dataset: name: GLUE QQP type: glue args: qqp metrics: - name: Accuracy type: accuracy value: 0.9152609448429384 - name: F1 type: f1 value: 0.8867138416771377 - task: type: natural-language-inference name: Natural Language Inference dataset: name: glue type: glue config: qqp split: validation metrics: - name: Accuracy type: accuracy value: 0.9153104130596093 verified: true - name: Precision type: precision value: 0.8732009117551286 verified: true - name: Recall type: recall value: 0.9007725898555593 verified: true - name: AUC type: auc value: 0.9685235648551861 verified: true - name: F1 type: f1 value: 0.8867724867724867 verified: true - name: loss type: loss value: 0.4435121417045593 verified: true --- # roberta-base-qqp This model is a fine-tuned version of [roberta-base](https://huggingface.co./roberta-base) on the GLUE QQP dataset. It achieves the following results on the evaluation set: - Loss: 0.4435 - Accuracy: 0.9153 - F1: 0.8867 - Combined Score: 0.9010 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:------:|:---------------:|:--------:|:------:|:--------------:| | 0.2751 | 1.0 | 22741 | 0.3057 | 0.8905 | 0.8512 | 0.8709 | | 0.2443 | 2.0 | 45482 | 0.2530 | 0.9005 | 0.8710 | 0.8857 | | 0.2157 | 3.0 | 68223 | 0.2643 | 0.9070 | 0.8769 | 0.8919 | | 0.1838 | 4.0 | 90964 | 0.2806 | 0.9109 | 0.8815 | 0.8962 | | 0.146 | 5.0 | 113705 | 0.3277 | 0.9113 | 0.8809 | 0.8961 | | 0.1262 | 6.0 | 136446 | 0.3939 | 0.9113 | 0.8812 | 0.8962 | | 0.0867 | 7.0 | 159187 | 0.4435 | 0.9153 | 0.8867 | 0.9010 | | 0.0757 | 8.0 | 181928 | 0.4812 | 0.9147 | 0.8844 | 0.8996 | | 0.0479 | 9.0 | 204669 | 0.5081 | 0.9151 | 0.8871 | 0.9011 | | 0.0379 | 10.0 | 227410 | 0.5647 | 0.9149 | 0.8858 | 0.9003 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1