File size: 4,896 Bytes
180bfeb
3aaa651
 
180bfeb
 
 
 
 
 
 
 
 
 
 
 
 
749a735
180bfeb
3aaa651
180bfeb
 
 
749a735
3aaa651
749a735
 
3aaa651
749a735
6687715
 
 
 
 
 
 
 
 
749a735
6687715
749a735
6687715
749a735
 
6687715
749a735
6687715
749a735
 
6687715
749a735
6687715
749a735
 
6687715
749a735
6687715
749a735
 
6687715
749a735
6687715
749a735
 
6687715
749a735
6687715
749a735
180bfeb
 
 
 
 
 
 
3aaa651
180bfeb
3aaa651
 
 
 
180bfeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
---
language:
- en
license: mit
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: roberta-base-qqp
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: GLUE QQP
      type: glue
      args: qqp
    metrics:
    - type: accuracy
      value: 0.9152609448429384
      name: Accuracy
    - type: f1
      value: 0.8867138416771377
      name: F1
  - task:
      type: natural-language-inference
      name: Natural Language Inference
    dataset:
      name: glue
      type: glue
      config: qqp
      split: validation
    metrics:
    - type: accuracy
      value: 0.9153104130596093
      name: Accuracy
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMTBmYmQ4MjhlZDBkOWM4YzNiNTE3MDNhMDVlMDNhNmU4YjBiZjNmMDlhOGU2ZmZjMzAwODczNDA0NzkwMDJkMyIsInZlcnNpb24iOjF9.Xpv1jn9glM7lbsQNQvtCnQuueHeGLD0xzEaquc3HfB1p_zFvDRe38mv_B1aHt-YxR16AhfpIbENOM1sPTaAJDA
    - type: precision
      value: 0.8732009117551286
      name: Precision
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOTYyYWEwOWE0YjI1NWJiNWMwNTMxOTc4OTFmYWI4MTJmMDRkMmEwYWRhMDAzYzVmNDA3Y2YzMzJkMDIzYzNjYyIsInZlcnNpb24iOjF9.O0KMG-s8zO6-tAat0HZRL6MN1ZaZQ_Ng3a_-qC5FndZefHktoJDSD9hiuZFTmlY6Vn1UkDlvG1XnnAi1Gv6pBg
    - type: recall
      value: 0.9007725898555593
      name: Recall
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYjQ3MzQyM2FlZTc1Y2VjOGY4MGEwMzY2MGM0YjQwNzIwNmVjMmRlNmExYWFlZjU3ZTIyZmJkMGRiZmJkMGZhMCIsInZlcnNpb24iOjF9.eYT8-djtIVkGrr8rhjqE2arUYgXQY0so9o8F4dXkLQt1fNEVa9kxTicapp4h1yTfU2jPpH778J_nvMCzwqixDw
    - type: auc
      value: 0.9685235648551861
      name: AUC
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOWRiZGYyYjE5MDFmNWQzN2ZkNGRkMTA4ZTEwNzYxMTg1NTNlY2VjODM0ZDY0NzA1NjQ3MGE2ZWNmY2MxYmNkMyIsInZlcnNpb24iOjF9.aQOO1uk3UON5hgbuMkKK93Yt1aRH4TpBad-KDwjj0_IM9Y11_-itRf6vZuWCkr0gZmyZ-4b0PA4v_dvf88y8Aw
    - type: f1
      value: 0.8867724867724867
      name: F1
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYTgxODBkMjZmMjdlZjAyNjA3Njk5OTA4NWExOWQ4NzMwNDlhODNlYTQ1NWZhM2JmNjhjOTA4ZjQxY2QwYTk4ZiIsInZlcnNpb24iOjF9.AjkBwMnuDZVnIXs6EE_ooluFrJSavg58EmUt5Oux2feFP7SvUaWbnetkHIyzBIKb5MEyxuPkSxXU3A6Di-t6CA
    - type: loss
      value: 0.4435121417045593
      name: loss
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNzU1ZDg0MGMyOGE0ZWM1Y2MwZjk0ZTAzNjc1MjBlZTUxNDIyNGZmN2EyZTUyZGM3N2E4NmQwOGUyNDBkOTVjNiIsInZlcnNpb24iOjF9.66LOnSclusAZY9uELpElvbcTuUVEJ95oXnspi9BHHw0tgwv38uUeq0cfojuQ_VsNN0UykiT0NooJdWaixpK4BA
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# roberta-base-qqp

This model is a fine-tuned version of [roberta-base](https://huggingface.co./roberta-base) on the GLUE QQP dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4435
- Accuracy: 0.9153
- F1: 0.8867
- Combined Score: 0.9010

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 10.0

### Training results

| Training Loss | Epoch | Step   | Validation Loss | Accuracy | F1     | Combined Score |
|:-------------:|:-----:|:------:|:---------------:|:--------:|:------:|:--------------:|
| 0.2751        | 1.0   | 22741  | 0.3057          | 0.8905   | 0.8512 | 0.8709         |
| 0.2443        | 2.0   | 45482  | 0.2530          | 0.9005   | 0.8710 | 0.8857         |
| 0.2157        | 3.0   | 68223  | 0.2643          | 0.9070   | 0.8769 | 0.8919         |
| 0.1838        | 4.0   | 90964  | 0.2806          | 0.9109   | 0.8815 | 0.8962         |
| 0.146         | 5.0   | 113705 | 0.3277          | 0.9113   | 0.8809 | 0.8961         |
| 0.1262        | 6.0   | 136446 | 0.3939          | 0.9113   | 0.8812 | 0.8962         |
| 0.0867        | 7.0   | 159187 | 0.4435          | 0.9153   | 0.8867 | 0.9010         |
| 0.0757        | 8.0   | 181928 | 0.4812          | 0.9147   | 0.8844 | 0.8996         |
| 0.0479        | 9.0   | 204669 | 0.5081          | 0.9151   | 0.8871 | 0.9011         |
| 0.0379        | 10.0  | 227410 | 0.5647          | 0.9149   | 0.8858 | 0.9003         |


### Framework versions

- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.1.0
- Tokenizers 0.12.1