--- language: - en license: mit tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: roberta-base-qnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE QNLI type: glue args: qnli metrics: - name: Accuracy type: accuracy value: 0.9245835621453414 --- # roberta-base-qnli This model is a fine-tuned version of [roberta-base](https://huggingface.co./roberta-base) on the GLUE QNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.2992 - Accuracy: 0.9246 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.2986 | 1.0 | 6547 | 0.2215 | 0.9171 | | 0.243 | 2.0 | 13094 | 0.2321 | 0.9173 | | 0.2048 | 3.0 | 19641 | 0.2992 | 0.9246 | | 0.1629 | 4.0 | 26188 | 0.3538 | 0.9220 | | 0.1308 | 5.0 | 32735 | 0.3533 | 0.9209 | | 0.0846 | 6.0 | 39282 | 0.4277 | 0.9229 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1