--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy base_model: bert-base-uncased model-index: - name: bert-base-uncased-sst2 results: - task: type: text-classification name: Text Classification dataset: name: GLUE SST2 type: glue args: sst2 metrics: - type: accuracy value: 0.9323394495412844 name: Accuracy --- # bert-base-uncased-sst2 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on the GLUE SST2 dataset. It achieves the following results on the evaluation set: - Loss: 0.2478 - Accuracy: 0.9323 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1668 | 1.0 | 2105 | 0.2513 | 0.9174 | | 0.1119 | 2.0 | 4210 | 0.2478 | 0.9323 | | 0.0699 | 3.0 | 6315 | 0.2764 | 0.9266 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1