File size: 4,284 Bytes
c90e72d 18a25db c90e72d ab35e43 c90e72d f5f4b59 c90e72d 18a25db c90e72d f5f4b59 c90e72d f5f4b59 c90e72d f5f4b59 2327c12 f5f4b59 2327c12 f5f4b59 2327c12 f5f4b59 2327c12 f5f4b59 2327c12 f5f4b59 2327c12 f5f4b59 2327c12 f5f4b59 2327c12 f5f4b59 2327c12 f5f4b59 2327c12 f5f4b59 2327c12 f5f4b59 2327c12 f5f4b59 2327c12 f5f4b59 c90e72d 18a25db c90e72d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
base_model: bert-base-uncased
model-index:
- name: bert-base-uncased-qqp
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: GLUE QQP
type: glue
args: qqp
metrics:
- type: accuracy
value: 0.9099925797674994
name: Accuracy
- type: f1
value: 0.8788252139455897
name: F1
- task:
type: natural-language-inference
name: Natural Language Inference
dataset:
name: glue
type: glue
config: qqp
split: validation
metrics:
- type: accuracy
value: 0.9099925797674994
name: Accuracy
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiY2RlZGIxNjAyYjRkMzg4N2FhMDEwYzk3NzNlNDEyNjc2ZTI4M2U4Mjk0ODU0NTk4NmNhNjUwZjAxNDBmNjdkMiIsInZlcnNpb24iOjF9.ftCigJiFH-iVFMBG5dSVIxdV4sgu3QVcQ0HGDjnxdI6nlWXRVAXEPkEFBeo2T-NfKNOV62HRYC7JgquMS00VDg
- type: precision
value: 0.8712531361415555
name: Precision
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMGM5MDdjZGY5YzE4OTg3YmJkYTgwYWMxOWY4NjhkNmE3N2YwMzc0OTc1ODQ0NjZhYjYzZDA3NTZkODczODMyYyIsInZlcnNpb24iOjF9.waQg4ueAVRbKStoFGrZrLBgWgsfmK-Ro-eHFYNLObmSbbi35hC46tjAGgNd1blHc6aNsLmpkfK-qtMCepPEEAQ
- type: recall
value: 0.8865300638226402
name: Recall
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNzYyODkxZmU4ZDNjNmQ0ZGZiMTExZTA0Mjk2ZjZkMDRiNGFhOWFhNTBhNzNkMjE5YzE2MDRkN2I4YjVlMTYxZSIsInZlcnNpb24iOjF9.wXo-nBoBrXeunx-4yCbkNUfyqc8HhrJ0NeQA1d_cNBXlsNVeGEznVFduSu8aVwrrLqbRpDJWYshPEL9eAxQPAQ
- type: auc
value: 0.9690747048570257
name: AUC
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYmZjZTc3NmU3MTQ4OWVmMWMzNzIxYjU5YjRjOGIwMzQwNGIxZmJhODJjMDhkZjA1ZGJmYjAzNDM4ZGQxZmQxNiIsInZlcnNpb24iOjF9.KiQN8JfNNTB3lBV-58LoLhQnUZTixTzId_URIpCFENICV2ykYzwfR7WW9WrOc8dbRv79121xB46fjNLGHziBAQ
- type: f1
value: 0.8788252139455897
name: F1
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNmYyNjYxYmJmNjg3ODA1MjZmYWMxODllZGMzODI1NGFjNGU5ZTIxNGI3MWI4NWZiZDUwMDExMTE0ODEyODgyMSIsInZlcnNpb24iOjF9.a-gyRh1_YMEWnCTypkwp3w39iy5_1PmFntHszwtTISqDJtDKQsl3FYFJGzujSzllHrXl9ILFTcjLSkamvZSECw
- type: loss
value: 0.28284332156181335
name: loss
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNzg5ZGJiM2E4MzI1MmZkNjAyOWFlYjU2OGI0NDJiNTI3YThiNzZkMDIwMTNhZDg1NzMwNjZmNTE5NDgzYTBiMSIsInZlcnNpb24iOjF9.CPKvNWzGTwAZf0PgU-rhQYS_sFnRmrBVor4fRzDuNQjz-QtjdCPxyfWpGVsuOzuAr_u71fdFS6tGyuVpasl1Bw
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-uncased-qqp
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on the GLUE QQP dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2829
- Accuracy: 0.9100
- F1: 0.8788
- Combined Score: 0.8944
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:|
| 0.2511 | 1.0 | 11371 | 0.2469 | 0.8969 | 0.8641 | 0.8805 |
| 0.1763 | 2.0 | 22742 | 0.2379 | 0.9071 | 0.8769 | 0.8920 |
| 0.1221 | 3.0 | 34113 | 0.2829 | 0.9100 | 0.8788 | 0.8944 |
### Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.1.0
- Tokenizers 0.12.1
|