File size: 5,853 Bytes
54d18a6
3fd6c7c
 
54d18a6
 
 
 
 
 
 
 
 
 
 
 
dce3153
54d18a6
3fd6c7c
54d18a6
 
 
dce3153
3fd6c7c
dce3153
c2d9067
 
 
 
 
 
 
 
 
dce3153
c2d9067
dce3153
c2d9067
dce3153
 
c2d9067
dce3153
c2d9067
dce3153
 
c2d9067
dce3153
c2d9067
dce3153
 
c2d9067
dce3153
c2d9067
dce3153
 
c2d9067
dce3153
c2d9067
dce3153
 
c2d9067
dce3153
c2d9067
dce3153
 
c2d9067
dce3153
c2d9067
dce3153
 
c2d9067
dce3153
c2d9067
dce3153
 
c2d9067
dce3153
c2d9067
dce3153
 
c2d9067
dce3153
c2d9067
dce3153
 
c2d9067
dce3153
c2d9067
dce3153
54d18a6
 
 
 
 
 
 
3fd6c7c
54d18a6
3fd6c7c
 
54d18a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: bert-base-uncased-mnli
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: GLUE MNLI
      type: glue
      args: mnli
    metrics:
    - type: accuracy
      value: 0.8500813669650122
      name: Accuracy
  - task:
      type: natural-language-inference
      name: Natural Language Inference
    dataset:
      name: glue
      type: glue
      config: mnli_matched
      split: validation
    metrics:
    - type: accuracy
      value: 0.8467651553744269
      name: Accuracy
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiN2MwZjZhM2RlMmU5Mjg5NzE0MTA3ODdjZGQwN2U5ZWNhYWUzMmRjMmVhMGEyMjQ3ZGMwOGRjNzkzM2VlNmUyOCIsInZlcnNpb24iOjF9.C6QBegyKVg-5xN06res-t3KxhUbC3kloOy_zf8Lxv981N2aNtmzpVPmiUimrESQj2j9h8PRhH3_shVd_iCpfCA
    - type: precision
      value: 0.8460148987014974
      name: Precision Macro
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNWViM2QzYjgxZWFkMzlhMzA4ZjdiYzJjZTRhMDQwMjYwZmU3ZmQ5ZmU5YjgzY2FkOWNhMThhODczNjhiMWRiMyIsInZlcnNpb24iOjF9.yLUl2HVaLNjaQImJELdCZjGIqFoBjoCLMh4iijrlneVn87_fJxaieaES-lf6za141LSPSnHmp1H6SKo1L7GGCQ
    - type: precision
      value: 0.8467651553744269
      name: Precision Micro
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOGIzMjJlMjIwNzA4YzAxYzQ5NGIxZjM0MWE2OWFlYTlmOTU5NzNjZTg0MTJiOTQ2N2U4NmE0NDFmNTc1MGQ5ZCIsInZlcnNpb24iOjF9.u-6lo01PvyYYLnVSc11mzEzga-p6b3gKxWLi_6ziAFZH_3HLZIqrdBoedqhkuRau5u6DcdUlGlWvs0k_7gxCBg
    - type: precision
      value: 0.8475656756385261
      name: Precision Weighted
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiY2FlZmE0MTMwNjRlN2MwZjZiMWY1OWE2OTM5MTc3N2Q2ZTVkMzBiYWUyMjU5YThlYjE1MGJkN2ViZTM3ODBhOCIsInZlcnNpb24iOjF9.0u0DToJ9Y_xstI5UB2yXydcHWPasql0z60zLONiRVWEjR6dbs2JzAHmRUrN3IO1QDRz5ssH0w979VRa-lyk3AA
    - type: recall
      value: 0.8463172075485045
      name: Recall Macro
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNzQ3MjA4MDI1YWZhYTg0NDliYjQ3NGQ5Y2I2NGI1NDNmNTQ3NjdkMmMxYWQ0NDExMzdhNzdmZWFmZTkyNGM5YiIsInZlcnNpb24iOjF9.veXK2iXkDSCDqM3_y3PyGwbZWsQRO_tvNRdmQB3vbvK1Bv4BYYL8WKUfIXm2Apr6IPRA0zeJNvfWIGnigX37Dg
    - type: recall
      value: 0.8467651553744269
      name: Recall Micro
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMDdlMzcwMzEyNWYxZGFhY2JkNzZmZWQ5NzU4ODQ2MjU3ODMzZGRmZmNlYTM2YTBkNTI4MjAzM2FkOWUxNDBlZSIsInZlcnNpb24iOjF9.rRyz3xQyJ4plzLAc7bJhSbTWdJB7ioX4qhaX6k0e52JL5RdBfwmMJc9lVPUhE70__10Hk_MdzLor5sFF1yaFAA
    - type: recall
      value: 0.8467651553744269
      name: Recall Weighted
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNTc2YzUwMWZjNGYyMjczNzk1YWJkZjkxMDI5NGRjMzdlMTU3YzZlZDQxNmI2YWE3MTQ3ZDVkMDAwY2NlNTA2NSIsInZlcnNpb24iOjF9.j4Kdqqo9LQxsb0A1TEd5K2U7j0qXrv50pbIc9DVdhoIrfIyFiSHuhPHIPZLubr-w0gVjn6aYl-kcM9EiGOSgCg
    - type: f1
      value: 0.8459654597797398
      name: F1 Macro
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZjcxOWM1YjBiNDVlODZlMjUyZTMwNDUzOTM2MmM4MGNiN2QwOGY1MTE2YjhkZDJjNTlhM2JhMzI4MTcwZjMyYyIsInZlcnNpb24iOjF9.T7zjSHGRWPNMYIiEWGRQTeqY9LHMm0j-3RE3wmYJ5je--eoMhBa7AvRefmSQwZgJtmxwITGGpvXz-0qdfel3Ag
    - type: f1
      value: 0.8467651553744269
      name: F1 Micro
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYzIzMjFlYzZmMmEyMDRlNDY5ZmYxOGMxZWM2ZjFjYmZlMTRlOTFiMjg3MWJmNmFjMzdkYTM2ODJlOGEwZWY1MSIsInZlcnNpb24iOjF9.1ZvHppu3JfoorjOpQooRVUFlsR1lLLoW_NoswdSsIUwyArbIDg6KRZLwxf-G40efl7hbdXZbr7Ey1WsyTdc0Dw
    - type: f1
      value: 0.8469586362613581
      name: F1 Weighted
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZDM0MTlhYjZlNzBjNjIwNTQyMWIzN2VlNDU5ZmE5YWRlNGYyMGJmZTA4YzFjMGZmMmJlYTNiMzc0YjVhZjQ1NSIsInZlcnNpb24iOjF9.Na8fUEOkFTbctyzR7oSKJNTn2DCwHs-kEXUOBhz9_nxedczUDKiB1xOR372db9b3ot8ttlmceaNgBOnPIiBCBw
    - type: loss
      value: 0.42515239119529724
      name: loss
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZDg5NWViMWNmYjczN2ZmMjIzODg2ZGYxZmU2ZjdjM2M2MDZjYTI0ZDc4OTUwZDk3YzBiZmFlMjI4ZmQ4Zjg0YSIsInZlcnNpb24iOjF9.4g708h4xeFXdR0vYBgU70gr-I-rLns2RrPWUg4hEQTO4RzQ1fCe-54gH5kH3DTRwLJU4qJYL4SQNZOE-62ahDg
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-base-uncased-mnli

This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on the GLUE MNLI dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4056
- Accuracy: 0.8501

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.4526        | 1.0   | 12272 | 0.4244          | 0.8388   |
| 0.3344        | 2.0   | 24544 | 0.4252          | 0.8469   |
| 0.2307        | 3.0   | 36816 | 0.4974          | 0.8445   |


### Framework versions

- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.1.0
- Tokenizers 0.12.1