Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- Javiai/failures-3D-print
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
pipeline_tag: object-detection
|
8 |
+
---
|
9 |
+
|
10 |
+
#3D Failures detection model based on Yolov5
|
11 |
+
|
12 |
+
|
13 |
+
## How to use
|
14 |
+
|
15 |
+
### Download the model
|
16 |
+
|
17 |
+
```python
|
18 |
+
from huggingface_hub import hf_hub_download
|
19 |
+
import torch
|
20 |
+
|
21 |
+
repo_id = "Javiai/3dprintfails-yolo5vs"
|
22 |
+
filenam = "model_torch.pt"
|
23 |
+
|
24 |
+
model_path = hf_hub_download(repo_id=repo_id, filename=filename)
|
25 |
+
```
|
26 |
+
|
27 |
+
### Combine with the original model
|
28 |
+
|
29 |
+
```python
|
30 |
+
model = torch.hub.load('Ultralytics/yolov5', 'custom', model_path, verbose = False)
|
31 |
+
```
|
32 |
+
|
33 |
+
### Prepare an image
|
34 |
+
|
35 |
+
#### From the original dataset
|
36 |
+
```python
|
37 |
+
|
38 |
+
from datasets import load_dataset
|
39 |
+
|
40 |
+
dataset = load_dataset('Javiai/failures-3D-print')
|
41 |
+
|
42 |
+
image = dataset["train"][0]["image"]
|
43 |
+
```
|
44 |
+
|
45 |
+
#### From local
|
46 |
+
|
47 |
+
```python
|
48 |
+
|
49 |
+
from PIL import Image
|
50 |
+
|
51 |
+
image = Image.load("path/to/image")
|
52 |
+
|
53 |
+
```
|
54 |
+
|
55 |
+
### Inference and show the detection
|
56 |
+
|
57 |
+
```python
|
58 |
+
|
59 |
+
from PIL import ImageDraw
|
60 |
+
|
61 |
+
draw = ImageDraw.Draw(image)
|
62 |
+
|
63 |
+
detections = model(image)
|
64 |
+
|
65 |
+
categories = [
|
66 |
+
{'name': 'error', 'color': (0,0,255)},
|
67 |
+
{'name': 'extrusor', 'color': (0,255,0)},
|
68 |
+
{'name': 'part', 'color': (255,0,0)},
|
69 |
+
{'name': 'spaghetti', 'color': (0,0,255)}
|
70 |
+
]
|
71 |
+
|
72 |
+
for detection in detections.xyxy[0]:
|
73 |
+
x1, y1, x2, y2, p, category_id = detection
|
74 |
+
x1, y1, x2, y2, category_id = int(x1), int(y1), int(x2), int(y2), int(category_id)
|
75 |
+
draw.rectangle((x1, y1, x2, y2),
|
76 |
+
outline=categories[category_id]['color'],
|
77 |
+
width=1)
|
78 |
+
draw.text((x1, y1), categories[category_id]['name'],
|
79 |
+
categories[category_id]['color'])
|
80 |
+
|
81 |
+
image
|
82 |
+
|
83 |
+
```
|
84 |
+
|
85 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/63c9c08a5fdc575773c7549b/3ZSkBvN0o8sSpQjGxdwJx.png)
|
86 |
+
|