File size: 1,606 Bytes
6b03456 4699fbb 6b03456 b165a6b 32d604d 6b03456 8353738 6b03456 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
---
license: mit
tags:
- generated_from_trainer
metrics:
- accuracy
base_model: deepset/gelectra-base
model-index:
- name: gelectra-base-injection-pt_v1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gelectra-base-injection-pt_v1
DEPRECATED - PLEASE USE NEWER GELECTRA OR DEBERTA VERSION
This model is a fine-tuned version of [deepset/gelectra-base](https://huggingface.co./deepset/gelectra-base) on a closed prompt injection dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0163
- Accuracy: 1.0
## Model description
The model classifies prompts as injections or legitimate questions.
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 45 | 0.2042 | 0.9211 |
| No log | 2.0 | 90 | 0.0247 | 1.0 |
| No log | 3.0 | 135 | 0.0163 | 1.0 |
### Framework versions
- Transformers 4.27.4
- Pytorch 2.0.0+cu118
- Tokenizers 0.13.3
|