File size: 13,790 Bytes
9577e68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
---
license: mit
base_model: roberta-base
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: results
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# results

This model is a fine-tuned version of [roberta-base](https://huggingface.co./roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7998
- Accuracy: 0.7023
- Precision: 0.7144
- Recall: 0.7023
- F1: 0.7065

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 5
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 1.0859        | 0.04  | 10   | 1.0722          | 0.6493   | 0.6735    | 0.6493 | 0.5118 |
| 1.0731        | 0.07  | 20   | 1.0562          | 0.6488   | 0.4209    | 0.6488 | 0.5105 |
| 1.0456        | 0.11  | 30   | 1.0316          | 0.6488   | 0.4209    | 0.6488 | 0.5105 |
| 1.0199        | 0.15  | 40   | 0.9979          | 0.6488   | 0.4209    | 0.6488 | 0.5105 |
| 0.9613        | 0.19  | 50   | 0.9362          | 0.6488   | 0.4209    | 0.6488 | 0.5105 |
| 0.8949        | 0.22  | 60   | 0.8645          | 0.6488   | 0.4209    | 0.6488 | 0.5105 |
| 0.9151        | 0.26  | 70   | 0.8606          | 0.6488   | 0.4209    | 0.6488 | 0.5105 |
| 0.8583        | 0.3   | 80   | 0.8593          | 0.6488   | 0.4209    | 0.6488 | 0.5105 |
| 0.9604        | 0.33  | 90   | 0.8539          | 0.6488   | 0.4209    | 0.6488 | 0.5105 |
| 0.7919        | 0.37  | 100  | 0.8504          | 0.6488   | 0.4209    | 0.6488 | 0.5105 |
| 0.9365        | 0.41  | 110  | 0.8520          | 0.6488   | 0.4209    | 0.6488 | 0.5105 |
| 0.9285        | 0.45  | 120  | 0.8521          | 0.6488   | 0.4209    | 0.6488 | 0.5105 |
| 0.8564        | 0.48  | 130  | 0.8615          | 0.6488   | 0.4209    | 0.6488 | 0.5105 |
| 0.8132        | 0.52  | 140  | 0.8583          | 0.6488   | 0.4209    | 0.6488 | 0.5105 |
| 0.8911        | 0.56  | 150  | 0.8467          | 0.6488   | 0.4209    | 0.6488 | 0.5105 |
| 0.8383        | 0.59  | 160  | 0.8373          | 0.6488   | 0.4209    | 0.6488 | 0.5105 |
| 0.8387        | 0.63  | 170  | 0.8372          | 0.6488   | 0.4209    | 0.6488 | 0.5105 |
| 0.979         | 0.67  | 180  | 0.8595          | 0.6488   | 0.4209    | 0.6488 | 0.5105 |
| 0.7621        | 0.71  | 190  | 0.8642          | 0.6488   | 0.4209    | 0.6488 | 0.5105 |
| 0.8367        | 0.74  | 200  | 0.8276          | 0.6553   | 0.6447    | 0.6553 | 0.5271 |
| 0.9116        | 0.78  | 210  | 0.8466          | 0.6493   | 0.6735    | 0.6493 | 0.5118 |
| 0.8444        | 0.82  | 220  | 0.8171          | 0.6504   | 0.6740    | 0.6504 | 0.5143 |
| 0.7815        | 0.86  | 230  | 0.7919          | 0.6667   | 0.6008    | 0.6667 | 0.5615 |
| 0.8592        | 0.89  | 240  | 0.7907          | 0.6732   | 0.5878    | 0.6732 | 0.5962 |
| 0.8933        | 0.93  | 250  | 0.7963          | 0.6813   | 0.6004    | 0.6813 | 0.6102 |
| 0.8409        | 0.97  | 260  | 0.7812          | 0.6797   | 0.6021    | 0.6797 | 0.6066 |
| 0.8285        | 1.0   | 270  | 0.7794          | 0.6737   | 0.5987    | 0.6737 | 0.5940 |
| 0.7895        | 1.04  | 280  | 0.7893          | 0.6846   | 0.6044    | 0.6846 | 0.6168 |
| 0.8012        | 1.08  | 290  | 0.7617          | 0.6813   | 0.6129    | 0.6813 | 0.6002 |
| 0.7215        | 1.12  | 300  | 0.8029          | 0.6748   | 0.6248    | 0.6748 | 0.5764 |
| 0.8134        | 1.15  | 310  | 0.8294          | 0.6781   | 0.5949    | 0.6781 | 0.6294 |
| 0.7247        | 1.19  | 320  | 0.7944          | 0.6732   | 0.5941    | 0.6732 | 0.6290 |
| 0.8043        | 1.23  | 330  | 0.7978          | 0.6656   | 0.5931    | 0.6656 | 0.6268 |
| 0.7647        | 1.26  | 340  | 0.7571          | 0.6884   | 0.6344    | 0.6884 | 0.6063 |
| 0.7807        | 1.3   | 350  | 0.7958          | 0.6412   | 0.6041    | 0.6412 | 0.6167 |
| 0.8031        | 1.34  | 360  | 0.7261          | 0.6906   | 0.6820    | 0.6906 | 0.6680 |
| 0.6965        | 1.38  | 370  | 0.7287          | 0.7003   | 0.6796    | 0.7003 | 0.6813 |
| 0.69          | 1.41  | 380  | 0.7115          | 0.7074   | 0.6981    | 0.7074 | 0.6581 |
| 0.7015        | 1.45  | 390  | 0.7391          | 0.7063   | 0.6932    | 0.7063 | 0.6813 |
| 0.7461        | 1.49  | 400  | 0.7624          | 0.6987   | 0.6791    | 0.6987 | 0.6787 |
| 0.758         | 1.52  | 410  | 0.7778          | 0.6819   | 0.6893    | 0.6819 | 0.6695 |
| 0.7617        | 1.56  | 420  | 0.7913          | 0.6878   | 0.6906    | 0.6878 | 0.6339 |
| 0.7848        | 1.6   | 430  | 0.7785          | 0.6629   | 0.6806    | 0.6629 | 0.6643 |
| 0.8138        | 1.64  | 440  | 0.7191          | 0.6954   | 0.6763    | 0.6954 | 0.6474 |
| 0.7451        | 1.67  | 450  | 0.7086          | 0.7030   | 0.7061    | 0.7030 | 0.6434 |
| 0.788         | 1.71  | 460  | 0.7202          | 0.6840   | 0.6956    | 0.6840 | 0.6497 |
| 0.7107        | 1.75  | 470  | 0.7543          | 0.6835   | 0.6067    | 0.6835 | 0.6379 |
| 0.7047        | 1.78  | 480  | 0.7940          | 0.6862   | 0.6697    | 0.6862 | 0.6258 |
| 0.8561        | 1.82  | 490  | 0.7497          | 0.6802   | 0.6860    | 0.6802 | 0.6666 |
| 0.804         | 1.86  | 500  | 0.7247          | 0.6938   | 0.6757    | 0.6938 | 0.6555 |
| 0.7796        | 1.9   | 510  | 0.7239          | 0.7063   | 0.6988    | 0.7063 | 0.6702 |
| 0.8124        | 1.93  | 520  | 0.7693          | 0.6976   | 0.7003    | 0.6976 | 0.6621 |
| 0.7306        | 1.97  | 530  | 0.8395          | 0.6363   | 0.6788    | 0.6363 | 0.6329 |
| 0.7079        | 2.01  | 540  | 0.7051          | 0.7041   | 0.6828    | 0.7041 | 0.6811 |
| 0.6018        | 2.04  | 550  | 0.7327          | 0.7058   | 0.6873    | 0.7058 | 0.6849 |
| 0.5824        | 2.08  | 560  | 0.7819          | 0.6743   | 0.6811    | 0.6743 | 0.6774 |
| 0.6001        | 2.12  | 570  | 0.7547          | 0.7139   | 0.6980    | 0.7139 | 0.7023 |
| 0.6471        | 2.16  | 580  | 0.7617          | 0.7172   | 0.7040    | 0.7172 | 0.6848 |
| 0.6226        | 2.19  | 590  | 0.7421          | 0.6927   | 0.6974    | 0.6927 | 0.6909 |
| 0.5203        | 2.23  | 600  | 0.7935          | 0.6694   | 0.6871    | 0.6694 | 0.6748 |
| 0.6445        | 2.27  | 610  | 0.7722          | 0.7182   | 0.7038    | 0.7182 | 0.6947 |
| 0.7027        | 2.3   | 620  | 0.7517          | 0.6754   | 0.7039    | 0.6754 | 0.6814 |
| 0.5662        | 2.34  | 630  | 0.6804          | 0.7182   | 0.7069    | 0.7182 | 0.7090 |
| 0.6304        | 2.38  | 640  | 0.6965          | 0.7128   | 0.6958    | 0.7128 | 0.6904 |
| 0.6258        | 2.42  | 650  | 0.7053          | 0.7041   | 0.7041    | 0.7041 | 0.7041 |
| 0.4966        | 2.45  | 660  | 0.7300          | 0.7177   | 0.7030    | 0.7177 | 0.7033 |
| 0.5721        | 2.49  | 670  | 0.8330          | 0.6683   | 0.6910    | 0.6683 | 0.6737 |
| 0.5507        | 2.53  | 680  | 0.8154          | 0.6857   | 0.7020    | 0.6857 | 0.6923 |
| 0.6392        | 2.57  | 690  | 0.8048          | 0.7166   | 0.7079    | 0.7166 | 0.6814 |
| 0.6128        | 2.6   | 700  | 0.7445          | 0.6786   | 0.6890    | 0.6786 | 0.6827 |
| 0.622         | 2.64  | 710  | 0.7029          | 0.7047   | 0.6895    | 0.7047 | 0.6870 |
| 0.5847        | 2.68  | 720  | 0.7911          | 0.6569   | 0.6889    | 0.6569 | 0.6677 |
| 0.6454        | 2.71  | 730  | 0.7062          | 0.7112   | 0.7017    | 0.7112 | 0.6797 |
| 0.5264        | 2.75  | 740  | 0.7419          | 0.6992   | 0.6893    | 0.6992 | 0.6870 |
| 0.649         | 2.79  | 750  | 0.7243          | 0.7063   | 0.7009    | 0.7063 | 0.7030 |
| 0.5343        | 2.83  | 760  | 0.7478          | 0.6889   | 0.7030    | 0.6889 | 0.6946 |
| 0.5335        | 2.86  | 770  | 0.7222          | 0.7237   | 0.7115    | 0.7237 | 0.7052 |
| 0.5228        | 2.9   | 780  | 0.7182          | 0.7226   | 0.7152    | 0.7226 | 0.7063 |
| 0.5605        | 2.94  | 790  | 0.7195          | 0.7210   | 0.7128    | 0.7210 | 0.7106 |
| 0.627         | 2.97  | 800  | 0.7559          | 0.6878   | 0.7135    | 0.6878 | 0.6933 |
| 0.6536        | 3.01  | 810  | 0.6616          | 0.7275   | 0.7141    | 0.7275 | 0.7105 |
| 0.4106        | 3.05  | 820  | 0.7176          | 0.7307   | 0.7209    | 0.7307 | 0.7230 |
| 0.3588        | 3.09  | 830  | 0.8387          | 0.7226   | 0.7230    | 0.7226 | 0.7183 |
| 0.404         | 3.12  | 840  | 0.8459          | 0.7117   | 0.7138    | 0.7117 | 0.7124 |
| 0.4313        | 3.16  | 850  | 0.8406          | 0.6992   | 0.7108    | 0.6992 | 0.7036 |
| 0.3407        | 3.2   | 860  | 0.8317          | 0.6916   | 0.7133    | 0.6916 | 0.6997 |
| 0.365         | 3.23  | 870  | 0.8310          | 0.6992   | 0.7110    | 0.6992 | 0.7035 |
| 0.3776        | 3.27  | 880  | 0.8376          | 0.6927   | 0.7107    | 0.6927 | 0.6986 |
| 0.3442        | 3.31  | 890  | 0.8554          | 0.7079   | 0.7082    | 0.7079 | 0.7079 |
| 0.41          | 3.35  | 900  | 0.9473          | 0.6401   | 0.7039    | 0.6401 | 0.6550 |
| 0.4649        | 3.38  | 910  | 0.8139          | 0.7134   | 0.7063    | 0.7134 | 0.7090 |
| 0.4359        | 3.42  | 920  | 0.8275          | 0.6992   | 0.7095    | 0.6992 | 0.7022 |
| 0.2906        | 3.46  | 930  | 0.8398          | 0.7096   | 0.7013    | 0.7096 | 0.7025 |
| 0.413         | 3.49  | 940  | 0.8558          | 0.6982   | 0.7049    | 0.6982 | 0.7009 |
| 0.3936        | 3.53  | 950  | 0.8457          | 0.7025   | 0.7058    | 0.7025 | 0.7039 |
| 0.3691        | 3.57  | 960  | 0.8312          | 0.7014   | 0.7102    | 0.7014 | 0.7050 |
| 0.3747        | 3.61  | 970  | 0.8146          | 0.7210   | 0.7074    | 0.7210 | 0.7086 |
| 0.4037        | 3.64  | 980  | 0.7906          | 0.7199   | 0.7132    | 0.7199 | 0.7150 |
| 0.4112        | 3.68  | 990  | 0.8135          | 0.7139   | 0.7145    | 0.7139 | 0.7137 |
| 0.3685        | 3.72  | 1000 | 0.8024          | 0.7106   | 0.7144    | 0.7106 | 0.7123 |
| 0.3881        | 3.75  | 1010 | 0.8339          | 0.7063   | 0.7109    | 0.7063 | 0.7063 |
| 0.4168        | 3.79  | 1020 | 0.8261          | 0.7231   | 0.7191    | 0.7231 | 0.7206 |
| 0.3591        | 3.83  | 1030 | 0.8014          | 0.7340   | 0.7258    | 0.7340 | 0.7281 |
| 0.3632        | 3.87  | 1040 | 0.8568          | 0.6878   | 0.7206    | 0.6878 | 0.6974 |
| 0.259         | 3.9   | 1050 | 0.8182          | 0.7324   | 0.7226    | 0.7324 | 0.7225 |
| 0.3741        | 3.94  | 1060 | 0.8511          | 0.7009   | 0.7200    | 0.7009 | 0.7078 |
| 0.3551        | 3.98  | 1070 | 0.8283          | 0.7150   | 0.7186    | 0.7150 | 0.7159 |
| 0.4105        | 4.01  | 1080 | 0.7817          | 0.7204   | 0.7209    | 0.7204 | 0.7205 |
| 0.2411        | 4.05  | 1090 | 0.8384          | 0.7372   | 0.7272    | 0.7372 | 0.7274 |
| 0.2166        | 4.09  | 1100 | 0.9466          | 0.7003   | 0.7240    | 0.7003 | 0.7066 |
| 0.4075        | 4.13  | 1110 | 0.9255          | 0.6976   | 0.7157    | 0.6976 | 0.7042 |
| 0.3328        | 4.16  | 1120 | 0.9120          | 0.6922   | 0.7153    | 0.6922 | 0.7003 |
| 0.1584        | 4.2   | 1130 | 0.9688          | 0.6857   | 0.7100    | 0.6857 | 0.6942 |
| 0.1737        | 4.24  | 1140 | 1.0205          | 0.7356   | 0.7267    | 0.7356 | 0.7289 |
| 0.2335        | 4.28  | 1150 | 1.0734          | 0.7068   | 0.7194    | 0.7068 | 0.7116 |
| 0.2179        | 4.31  | 1160 | 1.0748          | 0.7085   | 0.7190    | 0.7085 | 0.7127 |
| 0.244         | 4.35  | 1170 | 1.0801          | 0.7030   | 0.7220    | 0.7030 | 0.7097 |
| 0.2151        | 4.39  | 1180 | 1.0332          | 0.7112   | 0.7176    | 0.7112 | 0.7140 |
| 0.2602        | 4.42  | 1190 | 1.0343          | 0.7134   | 0.7181    | 0.7134 | 0.7154 |
| 0.131         | 4.46  | 1200 | 1.0453          | 0.7128   | 0.7175    | 0.7128 | 0.7149 |
| 0.1966        | 4.5   | 1210 | 1.0673          | 0.7096   | 0.7160    | 0.7096 | 0.7121 |
| 0.2136        | 4.54  | 1220 | 1.0550          | 0.7166   | 0.7157    | 0.7166 | 0.7158 |
| 0.1625        | 4.57  | 1230 | 1.0690          | 0.7172   | 0.7148    | 0.7172 | 0.7156 |
| 0.2199        | 4.61  | 1240 | 1.0908          | 0.7112   | 0.7182    | 0.7112 | 0.7141 |
| 0.2028        | 4.65  | 1250 | 1.0991          | 0.7085   | 0.7200    | 0.7085 | 0.7130 |
| 0.2669        | 4.68  | 1260 | 1.0944          | 0.7134   | 0.7205    | 0.7134 | 0.7163 |
| 0.1408        | 4.72  | 1270 | 1.0827          | 0.7248   | 0.7198    | 0.7248 | 0.7215 |
| 0.2649        | 4.76  | 1280 | 1.0974          | 0.7199   | 0.7182    | 0.7199 | 0.7187 |
| 0.1512        | 4.8   | 1290 | 1.1159          | 0.7220   | 0.7212    | 0.7220 | 0.7214 |
| 0.1962        | 4.83  | 1300 | 1.1374          | 0.7161   | 0.7206    | 0.7161 | 0.7180 |
| 0.2322        | 4.87  | 1310 | 1.1435          | 0.7144   | 0.7226    | 0.7144 | 0.7178 |
| 0.2095        | 4.91  | 1320 | 1.1408          | 0.7106   | 0.7220    | 0.7106 | 0.7151 |
| 0.1534        | 4.94  | 1330 | 1.1466          | 0.7123   | 0.7248    | 0.7123 | 0.7170 |
| 0.2505        | 4.98  | 1340 | 1.1481          | 0.7123   | 0.7248    | 0.7123 | 0.7170 |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0