import pandas as pd df = pd.read_feather("//media/data/mbti-reddit/disprop_sample100k_total.feather") #change this to proper path #'/content/drive/MyDrive/Colab Notebooks/clickbait_hold_X.csv' df=df.drop(columns=['authors','subreddit']) df=df.sample(80000, random_state=1) #random sampling df['labels'] = df['labels'].replace(['INTP','ISTP','ENTP','ESTP','INFP','ISFP','ENFP','ESFP', \ 'INTJ','ISTJ','ENTJ','ESTJ','INFJ','ISFJ','ENFJ','ESFJ'], \ [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]) df=df.rename(columns={'labels':'labels','comments':'text'}) from datasets import Dataset dataset = Dataset.from_pandas(df) dataset.shuffle(seed=27) split_set = dataset.train_test_split(test_size=0.2) from transformers import AlbertTokenizer, AlbertModel tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2') from transformers import AutoModelForSequenceClassification, TrainingArguments, Trainer model = AutoModelForSequenceClassification.from_pretrained("albert-base-v2", num_labels=16) def preprocess_function(examples): return tokenizer(examples["text"], truncation=True) tokenized_dataset = split_set.map(preprocess_function, batched=True) from transformers import DataCollatorWithPadding #tokenized_datasets = tokenized_datasets.remove_columns(books_dataset["train"].column_names) data_collator = DataCollatorWithPadding(tokenizer=tokenizer) import evaluate import numpy as np def compute_metrics(eval_preds): metric = evaluate.combine([ evaluate.load("precision"), evaluate.load("recall")]) #evaluate.load("precision", average="weighted"), #evaluate.load("recall", average="weighted")]) logits, labels = eval_preds predictions = np.argmax(logits, axis=-1) return metric.compute(predictions=predictions, references=labels, average='weighted') training_args = TrainingArguments( evaluation_strategy="epoch", #save_strategy="epoch", output_dir="/home/deimann/mbti-project/balanced_train", #save_total_limit=5, #load_best_model_at_end = True, learning_rate=2e-5,#2e per_device_train_batch_size=36 ,#16 per_device_eval_batch_size=16,#16 num_train_epochs=10, weight_decay=0.01, ) trainer = Trainer( model=model, args=training_args, train_dataset=tokenized_dataset["train"], eval_dataset=tokenized_dataset["test"], tokenizer=tokenizer, data_collator=data_collator, #compute_metrics=compute_metrics, ) trainer.train()