--- library_name: transformers language: - zh license: mit base_model: openai/whisper-large-v3-turbo tags: - wft - whisper - automatic-speech-recognition - audio - speech - generated_from_trainer datasets: - JacobLinCool/mozilla-foundation-common_voice_16_1-zh-TW-preprocessed metrics: - wer model-index: - name: whisper-large-v3-turbo-common_voice_16_1-zh-TW-2 results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: JacobLinCool/mozilla-foundation-common_voice_16_1-zh-TW-preprocessed type: JacobLinCool/mozilla-foundation-common_voice_16_1-zh-TW-preprocessed metrics: - type: wer value: 38.545016077170416 name: Wer --- # whisper-large-v3-turbo-common_voice_16_1-zh-TW-2 This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co./openai/whisper-large-v3-turbo) on the JacobLinCool/mozilla-foundation-common_voice_16_1-zh-TW-preprocessed dataset. It achieves the following results on the evaluation set: - Loss: 0.2346 - Wer: 38.5450 - Cer: 10.8963 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:------:|:----:|:---------------:|:-------:|:-------:| | No log | 0 | 0 | 2.7503 | 76.5675 | 20.3917 | | 0.9352 | 0.9987 | 377 | 0.2472 | 47.9301 | 13.6656 | | 0.73 | 1.9980 | 754 | 0.2502 | 47.0056 | 13.5652 | | 0.4985 | 2.9974 | 1131 | 0.2559 | 46.2018 | 13.7057 | | 0.1928 | 3.9993 | 1509 | 0.2595 | 45.9606 | 13.0906 | | 0.2539 | 4.9987 | 1886 | 0.2522 | 44.7950 | 13.1459 | | 0.0607 | 5.9980 | 2263 | 0.2422 | 44.7548 | 12.5006 | | 0.0826 | 6.9974 | 2640 | 0.2488 | 43.8907 | 12.4906 | | 0.0151 | 7.9993 | 3018 | 0.2403 | 40.2331 | 11.4537 | | 0.0056 | 8.9987 | 3395 | 0.2390 | 39.8312 | 11.5290 | | 0.0056 | 9.9927 | 3770 | 0.2346 | 38.5450 | 10.8963 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.4.1+cu124 - Datasets 3.0.2 - Tokenizers 0.20.1